会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 23. 发明申请
    • PUMP PROBE MEASURING DEVICE
    • 泵探头测量装置
    • US20140240710A1
    • 2014-08-28
    • US14236771
    • 2012-07-31
    • Hidemi ShigekawaOsamu Takeuchi
    • Hidemi ShigekawaOsamu Takeuchi
    • G01N21/55
    • G01N21/55B82Y35/00G01N21/1717G01N21/636G01N2021/1719G01N2021/1725G01N2021/1789G01N2021/1791G01N2201/0697G01Q60/12H01J37/244H01J37/26H01J2237/24507H01J2237/24564H01J2237/2818
    • A pump probe measuring device (1) comprises: an ultrashort optical pulse laser generator (2) for generating a first ultrashort optical pulse train which is a pump light (3a), second and third ultrashort optical pulse trains (3b), (3c) which are probe lights; an optical shutter unit (6) to which the second and the third ultrashort pulse trains (3b), (3c) are introduced; and a detecting unit (20) including an irradiation optical system (8) for directing the pump light (3a), the first probe light (3b) and the second probe light (3c) to a sample (7), a sensor (11) for detecting a probe signal from the sample (7), and a phase-sensitive detecting means (12) connected to the sensor (11). An optical shutter control unit (10) periodically modulates the delay time of the first probe light (3b) and that of the second probe light (3c) with respect to the pump light (3a), and the modulated first and second probe lights (3a), (3b) illuminate the sample (7) alternately to detect the probe signals from the sample (7) by the phase-sensitive detecting means (12) in synchronization with the periodic modulation signal of the delay time.
    • 泵探头测量装置(1)包括:超短光脉冲激光发生器(2),用于产生作为泵浦光(3a)的第一超短脉冲串,第二和第三超短脉冲序列(3b),(3c) 探针灯; 引入第二和第三超短脉冲串(3b),(3c)的光学快门单元(6); 以及检测单元(20),包括用于将泵浦光(3a),第一探测光(3b)和第二探测光(3c)引导到样品(7)的照射光学系统(8),传感器(11) ),用于检测来自所述样品(7)的探针信号;以及相敏检测装置(12),连接到所述传感器(11)。 光学快门控制单元(10)相对于泵浦光(3a)周期性地调制第一探测光(3b)和第二探测光(3c)的延迟时间,以及调制的第一和第二探测光( 3a),(3b)交替地照射样品(7),以与延迟时间的周期性调制信号同步地由相敏检测装置(12)检测来自采样(7)的探测信号。
    • 25. 发明授权
    • Method and apparatus for determining the junction depth of a semiconductor region
    • 用于确定半导体区域的结深度的方法和装置
    • US08384904B2
    • 2013-02-26
    • US12726173
    • 2010-03-17
    • Janusz Bogdanowicz
    • Janusz Bogdanowicz
    • G01N21/55
    • G01N21/1717G01N2021/1725H01L22/12
    • A method of determining a value of a depth of a semiconductor junction of a substrate using a photomodulated optical reflectance measurement technique is disclosed. In one aspect, the method includes obtaining a substrate which has at least a first region including the semiconductor junction. The method further includes obtaining a reference region. the method further includes performing at least one sequence of: a) selecting a set of measurement parameters for the photomodulated optical reflectance measurement, b) measuring on the at least a first region a first optical signal representative of the substrate with the semiconductor junction using the selected set of parameters, c) measuring on the reference region a second optical signal using the selected set of parameters, and d) determining the ratio of the first optical signal to the second optical signal, and thereafter extracting from the ratio the depth of the semiconductor junction.
    • 公开了使用光调制光反射测量技术确定衬底的半导体结的深度的值的方法。 一方面,该方法包括获得至少包括半导体结的第一区域的衬底。 该方法还包括获得参考区域。 该方法还包括执行以下至少一个序列:a)选择用于光调制光反射测量的一组测量参数,b)在至少第一区域上测量表示具有半导体结的衬底的第一光信号, 选择的参数集合,c)使用所选择的参数集在参考区域上测量第二光学信号,以及d)确定第一光学信号与第二光学信号的比率,然后从比率中提取第二光学信号的深度 半导体结。
    • 26. 发明授权
    • Measuring characteristics of ultra-shallow junctions
    • 超浅结点的测量特性
    • US08120776B1
    • 2012-02-21
    • US12545015
    • 2009-08-20
    • Alex SalnikLena Nicolaides
    • Alex SalnikLena Nicolaides
    • G01N21/55
    • G01N21/1717G01N2021/1725
    • Carrier activation and end-of-range defect density of ultra-shallow junctions in integrated circuits are determined using modulated optical reflectance signals, DC reflectances of pump or probe laser beams, and in-phase and quadrature signal processing. A method for determining characteristics of an ultra-shallow junction includes periodically exciting a region of the substrate using a pump laser beam, and reflecting a probe laser beam from the excited region. A modulated optical reflectance signal is measured along with DC reflectance of the probe laser beam. The modulated optical reflectance signal and DC reflectance are compared with reference signals generated from calibration substrates to determine carrier activation and end-of-range defect density in the junction.
    • 使用调制的光反射信号,泵浦或探针激光束的直流反射以及同相和正交信号处理来确定集成电路中超浅结的载流子激活和终端缺陷密度。 用于确定超浅结的特性的方法包括使用泵浦激光束周期性地激励基板的区域,并且反射来自激发区域的探测激光束。 测量调制的光反射信号与探测激光束的直流反射率一起测量。 将调制的光反射信号和DC反射率与从校准基板产生的参考信号进行比较,以确定接合处的载流子激活和端部范围缺陷密度。
    • 29. 发明申请
    • METHOD AND APPARATUS FOR DETERMINING THE JUNCTION DEPTH OF A SEMICONDUCTOR REGION
    • 用于确定半导体区域的连接深度的方法和装置
    • US20100238449A1
    • 2010-09-23
    • US12726173
    • 2010-03-17
    • Janusz Bogdanowicz
    • Janusz Bogdanowicz
    • G01N21/55
    • G01N21/1717G01N2021/1725H01L22/12
    • A method of determining a value of a depth of a semiconductor junction of a substrate using a photomodulated optical reflectance measurement technique is disclosed. In one aspect, the method includes obtaining a substrate which has at least a first region including the semiconductor junction. The method further includes obtaining a reference region. the method further includes performing at least one sequence of: a) selecting a set of measurement parameters for the photomodulated optical reflectance measurement, b) measuring on the at least a first region a first optical signal representative of the substrate with the semiconductor junction using the selected set of parameters, c) measuring on the reference region a second optical signal using the selected set of parameters, and d) determining the ratio of the first optical signal to the second optical signal, and thereafter extracting from the ratio the depth of the semiconductor junction.
    • 公开了使用光调制光反射测量技术确定衬底的半导体结的深度的值的方法。 一方面,该方法包括获得至少包括半导体结的第一区域的衬底。 该方法还包括获得参考区域。 该方法还包括执行以下至少一个序列:a)选择用于光调制光反射测量的一组测量参数,b)在至少第一区域上测量表示具有半导体结的衬底的第一光信号, 选择的参数集合,c)使用所选择的参数集在参考区域上测量第二光学信号,以及d)确定第一光学信号与第二光学信号的比率,然后从比率中提取第二光学信号的深度 半导体结。
    • 30. 发明授权
    • Systems and methods for near-field heterodyne spectroscopy
    • 近场外差光谱的系统和方法
    • US07760364B1
    • 2010-07-20
    • US12256324
    • 2008-10-22
    • Guorong V. ZhuangJohn FieldenChristopher F. Bevis
    • Guorong V. ZhuangJohn FieldenChristopher F. Bevis
    • G01B9/02
    • G01N21/1717G01N2021/1725G01Q60/22
    • In a near-field heterodyne spectroscopy system, a near-field generation device receives the output of a pump beam source and is also made to vibrate or move at a frequency f to generate a modulated near-field beam having a near-field component. The outputs of the pump beam source and a probe beam source (optional) as well as the modulated near-field beam are directed to the same point on a sample. At least one of the outputs of the pump beam source and probe beam source is modulated at a frequency Ω. Thus, the reflected beam that results from the interaction with the region illuminated by the modulated near-field beam is modulated at frequencies Ω+f and Ω−f. Because the excitation is near-field, the electric field in the sample is evanescent and ensures a shallow probing depth as well as smaller lateral dimensions beyond diffraction limit.
    • 在近场外差光谱系统中,近场产生装置接收泵浦光束源的输出,并且还使其以频率f振动或移动以产生具有近场分量的调制近场光束。 泵浦光束源和探测光束源(可选)以及调制的近场光束的输出被引导到样品上的相同点。 泵浦光源和探测光束源的输出中的至少一个以频率&OHgr进行调制。 因此,由与被调制的近场光束照射的区域的相互作用产生的反射光束被调制在频率ωgr+ f和&omegr; -f。 因为激发是近场的,所以样品中的电场是消逝的,并且确保了较深的探测深度以及超过衍射极限的较小的横向尺寸。