会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明申请
    • GAIT CREATION DEVICE OF LEG-TYPE MOBILE ROBOT
    • LEG型移动机器人GAIT创建装置
    • US20090312867A1
    • 2009-12-17
    • US12096987
    • 2006-10-31
    • Tadaaki HasegawaNobuyuki Ohno
    • Tadaaki HasegawaNobuyuki Ohno
    • G06F19/00
    • B62D57/032
    • A provisional desired motion trajectory of an object is determined based on a moving plan of the object. Then, it is determined whether a robot leg motion can satisfy a necessary requirement. The requirement is related to a position/posture relationship between the object and the robot, and a determination of whether the requirement can be satisfied is made at a future, predetermined step. A restrictive condition related to robot leg motion is satisfied at each step up to the predetermined number of steps. If the requirement is satisfied, then a desired gait is generated on the basis of the provisional desired motion trajectory. Otherwise, a desired gait is generated on the basis of a desired motion trajectory of the object according to a corrected moving plan.
    • 基于对象的移动计划来确定对象的临时期望运动轨迹。 然后,确定机器人腿部运动是否能够满足必要的要求。 该要求涉及物体与机器人之间的位置/姿势关系,并且在将来的预定步骤中确定是否满足要求。 在每一步达到预定步数的步骤时,满足与机器人腿运动有关的限制条件。 如果满足要求,则基于临时期望运动轨迹产生期望的步态。 否则,根据校正的移动计划,基于物体的期望的运动轨迹产生期望的步态。
    • 23. 发明授权
    • Knee pad for a legged walking robot
    • 用于腿式步行机器人的膝垫
    • US06401846B1
    • 2002-06-11
    • US09630743
    • 2000-08-02
    • Toru TakenakaTakayuki KawaiHiroshi GomiTadaaki HasegawaTakashi Matsumoto
    • Toru TakenakaTakayuki KawaiHiroshi GomiTadaaki HasegawaTakashi Matsumoto
    • B62D5702
    • B62D57/032B25J19/0091
    • In a biped walking robot having a body and two articulated legs each connected to the body through a hip joint and having a knee joint and an ankle joint, connected by a shank link, a knee pad is mounted on the shank link as a landing/shock absorbing means at a position adjacent to the knee joint which is brought into contact with the floor when coming into knee-first contact with the floor such that the knee joint is to be positioned at a location forward of the center of gravity of the robot in a direction of robot advance, while absorbing impact occurring from the contact with the floor. With this, the robot can be easily stood up from an attitude with its knee joint regions in contact with the floor. Moreover, when coming into knee-first contact with the floor, it can absorb the impact of the contact to protect the knee joint regions and the floor from damage.
    • 在具有主体和两个铰接腿的双足步行机器人中,每个腿部通过髋关节连接到身体,并且具有通过柄连杆连接的膝关节和踝关节,膝关节垫作为着陆/ 冲击吸收装置位于与膝关节相邻的位置处,当与地板进行膝盖 - 第一次接触时,其与地板接触,使得膝关节位于机器人重心的前方位置 在机器人前进的方向上,同时吸收与地板接触发生的冲击。 这样,机器人可以容易地从与膝盖接合区域与地板接触的姿态站起来。 此外,当与地板进行膝盖首次接触时,它可以吸收接触的冲击,以保护膝关节区域和地板免受损坏。
    • 24. 发明授权
    • Method and system for generating trajectory of robot and the like
    • 用于生成机器人轨迹的方法和系统等
    • US5594644A
    • 1997-01-14
    • US65242
    • 1993-05-20
    • Tadaaki HasegawaToru Takenaka
    • Tadaaki HasegawaToru Takenaka
    • B25J5/00B25J9/10B62D57/032G05D1/02G06F7/70G05B19/04
    • G05D1/0212B62D57/032G05D1/0272G05D2201/0217
    • A trajectory generation for a member such as a foot of a legged mobile robot. First, basic trajectories defining some typical motions of the foot including a constraint condition are established on a virtual plane or surface fixed on a coordinate system. The virtual plane is kept fixed on the ground until a time the foot is to be lifted. Then at this period free from the constraint condition, the coordinate system is displaced such that the virtual surface coincides with another point of the ground on which the foot is to be landed. A trajectory for a footrise to footfall is thus generated by combining the basic trajectories in the coordinate system and the amount of displacement of the coordinate system. Thus, the boundary conditions become extremely simple and hence, trajectory generation is greatly simplified. A real time trajectory correction can be conducted if desired.
    • 用于诸如腿式移动机器人的脚的构件的轨迹生成。 首先,在固定在坐标系上的虚拟平面或表面上建立了定义包括约束条件的脚的典型运动的基本轨迹。 虚拟平面保持固定在地面上,直到脚被抬起。 然后在这个时间没有约束条件的情况下,坐标系被移位,使得虚拟表面与脚将要降落的地面的另一个点重合。 因此,通过组合坐标系中的基本轨迹和坐标系的位移量来生成脚踏脚步的轨迹。 因此,边界条件变得非常简单,因此大大简化了轨迹生成。 如果需要,可以进行实时轨迹校正。
    • 25. 发明授权
    • Gait generation system for a legged mobile robot
    • 一种腿式移动机器人步态生成系统
    • US5357433A
    • 1994-10-18
    • US065213
    • 1993-05-20
    • Toru TakenakaTadaaki Hasegawa
    • Toru TakenakaTadaaki Hasegawa
    • B25J5/00B25J9/10B62D57/032B62D57/02G05B19/00
    • B62D57/032
    • A gait generation for a biped mobile robot having a body and two legs each connected to the body and having a foot at its distal end in walking a terrain including a first surface and a second surface met at a dihedral angle such that the robot feet are in simultaneous contact with the different two surfaces. The centers of ground contact pressure distribution of the first and second surfaces are determined. A virtual third surface which assumes to vary from the first surface to the second surface is established. Then a virtual ZMP (Zero Moment Point) is assumed on the virtual third surface such that the virtual ZMP is displaced along a path obtained by connecting the centers of the ground pressure distribution of the first and second surfaces. And a gait for the robot is generated such that a ZMP kinematically determined from the motion of the robot coincides with the target ZMP.
    • 一种用于两足动物机器人的步态生成器,其具有主体和两个腿,每个腿彼此连接到身体,并且在步行包括第一表面和第二表面的地面中的脚在其远端处以二面角相交,使得机器人脚是 同时接触不同的两个表面。 确定第一表面和第二表面的接地压力分布的中心。 建立了从第一表面到第二表面变化的虚拟第三表面。 然后在虚拟第三表面上假设虚拟ZMP(零矩点),使得虚拟ZMP沿着通过连接第一和第二表面的地面压力分布的中心而获得的路径移位。 并且产生用于机器人的步态,使得从机器人的运动运动学确定的ZMP与目标ZMP重合。
    • 26. 发明授权
    • Gait creation device of leg-type mobile robot
    • 腿型移动机器人步态创造装置
    • US08204625B2
    • 2012-06-19
    • US12096987
    • 2006-10-31
    • Tadaaki HasegawaNobuyuki Ohno
    • Tadaaki HasegawaNobuyuki Ohno
    • G05B19/04
    • B62D57/032
    • A provisional desired motion trajectory of an object is determined based on a moving plan of the object. Then, it is determined whether a robot leg motion can satisfy a necessary requirement. The requirement is related to a position/posture relationship between the object and the robot, and a determination of whether the requirement can be satisfied is made at a future, predetermined step. A restrictive condition related to robot leg motion is satisfied at each step up to the predetermined number of steps. If the requirement is satisfied, then a desired gait is generated on the basis of the provisional desired motion trajectory. Otherwise, a desired gait is generated on the basis of a desired motion trajectory of the object according to a corrected moving plan.
    • 基于对象的移动计划来确定对象的临时期望运动轨迹。 然后,确定机器人腿部运动是否能够满足必要的要求。 该要求涉及物体与机器人之间的位置/姿势关系,并且在将来的预定步骤中确定是否满足要求。 在每一步达到预定步数的步骤时,满足与机器人腿运动有关的限制条件。 如果满足要求,则基于临时期望运动轨迹产生期望的步态。 否则,根据校正的移动计划,基于物体的期望的运动轨迹产生期望的步态。
    • 27. 发明授权
    • Gait generating device of legged mobile robot
    • 腿式移动机器人步态生成装置
    • US07840309B2
    • 2010-11-23
    • US11722052
    • 2005-09-28
    • Tadaaki Hasegawa
    • Tadaaki Hasegawa
    • B25J13/00
    • B62D57/032
    • When a new desired gait of a robot is generated, it is determined, on the assumption that the trajectory of an acting force between the robot and an object at a predetermined time point in the future changes to a trajectory different from a desired trajectory, whether a predetermined dynamical restrictive condition can be satisfied when a desired gait after the predetermined time point is generated. If the condition cannot be satisfied, then a moving schedule for the object is corrected, the desired trajectory or the like of the acting force between the robot and the object is re-determined, and a new desired gait is generated using the re-determined desired trajectory. With this arrangement, the gait of the robot to cause the robot to perform an operation for moving the object is generated such that the stability of the posture of the robot can be secured even if an acting force between the robot and the object in the future deviates from a desired value.
    • 当产生机器人的新的期望的步态时,假设机器人和物体在将来的预定时间点上的作用力的轨迹将变成不同于期望轨迹的轨迹, 当产生预定时间点之后的期望步态时,可以满足预定的动态限制条件。 如果条件不能满足,则修正对象的移动计划,重新确定机器人和对象之间的作用力的期望轨迹等,并且使用重新确定的新的期望步态 所需轨迹。 利用这种布置,机器人使机器人执行用于移动物体的操作的步态被产生,使得即使机器人和物体在将来的作用力也能够确保机器人的姿势的稳定性 偏离所需值。
    • 28. 发明申请
    • STATE ESTIMATING APPARATUS AND STATE ESTIMATING PROGRAM
    • 国家估算设备和国家估算方案
    • US20090306949A1
    • 2009-12-10
    • US12475779
    • 2009-06-01
    • Tadaaki Hasegawa
    • Tadaaki Hasegawa
    • G06G7/48G06F17/18
    • G06T7/277G06T2207/10016G06T2207/30224
    • A state estimating apparatus permits efficient, highly accurate estimation of the state of an object. A particle in a state variable space defined by a second state variable preferentially remains or increases as the likelihood thereof relative to a current measured value of a first state variable is higher, while a particle is preferentially extinguished as the likelihood thereof is lower. A particle which transitions in the state variable space according to a state transition model with a high probability of being followed by an object (a high-likelihood model) as a next model tends to increase. On the other hand, although in a small quantity, there are particles having models (low-likelihood models) which are different from the high-likelihood model as their unique models.
    • 状态估计装置允许对物体的状态进行有效,高精度的估计。 由第二状态变量定义的状态变量空间中的粒子优先保持或增加,因为其相对于第一状态变量的当前测量值的可能性较高,而粒子被优先消失,因为其可能性较低。 根据状态转换模型在状态变量空间中转移的概率随着对象(高似然模型)作为下一个模型的高概率趋向于增加的粒子。 另一方面,尽管少量存在具有与高可能性模型不同的模型(低似然模型)的粒子作为其唯一模型。
    • 29. 发明申请
    • MOTION CONTROL SYSTEM, MOTION CONTROL METHOD, AND MOTION CONTROL PROGRAM
    • 运动控制系统,运动控制方法和运动控制程序
    • US20080312772A1
    • 2008-12-18
    • US12137873
    • 2008-06-12
    • Tadaaki HasegawaYugo UedaSoshi IbaDarrin Bentivegna
    • Tadaaki HasegawaYugo UedaSoshi IbaDarrin Bentivegna
    • G05B19/00
    • G06N3/008G05B2219/40391
    • The present invention provides a motion control system control a motion of a second motion body by considering an environment which a human contacts and a motion mode appropriate to the environment, and an environment which a robot actually contacts. The motion mode is learned based on an idea that it is sufficient to learn only a feature part of the motion mode of the human without a necessity to learn the others. Moreover, based on an idea that it is sufficient to reproduce only the feature part of the motion mode of the human without a necessity to reproduce the others, the motion mode of the robot is controlled by using the model obtained from the learning result. Thereby, the motion mode of the robot is controlled by using the motion mode of the human as a prototype without restricting the motion mode thereof more than necessary.
    • 本发明提供一种运动控制系统,其通过考虑人体接触的环境和适合于环境的运动模式以及机器人实际接触的环境来控制第二运动体的运动。 基于这样的想法来学习运动模式,即仅仅学习人的运动模式的特征部分是足够的,而不需要学习其他动作模式。 此外,基于仅仅再现人的运动模式的特征部分而不需要再现其他的想法就足够了,通过使用从学习结果获得的模型来控制机器人的运动模式。 因此,通过使用人的运动模式作为原型来控制机器人的运动模式,而不限制其运动模式。
    • 30. 发明申请
    • Controller of Leg Type Moving Robot
    • 腿型移动机器人控制器
    • US20080065269A1
    • 2008-03-13
    • US11575925
    • 2005-07-28
    • Tadaaki Hasegawa
    • Tadaaki Hasegawa
    • G05B19/00
    • B62D57/032
    • A controller of a leg type moving robot determines an action force to be input to an object dynamic model 2 such that a motion state amount (object model velocity) of the object dynamic model 2 follows a desired motion state amount based on a moving plan of an object, and also determines a manipulated variable of the motion state amount (object model velocity) of the object dynamic model 2 such that the difference between an actual object position and a desired object position approximates zero, and then inputs the determined action force and manipulated variable to the object dynamic model 2 to sequentially determine the desired object position. Further, a desired object reaction force to a robot from the object is determined from the determined reaction force. This arrangement causes the robot to perform an operation of moving an object while securing stability of the robot by determining the desired motion of the object and the desired value of an action force between the object and the robot while minimizing the difference between a motion state of the object on the object dynamic model and an actual motion state.
    • 腿型移动机器人的控制器确定要输入到对象动态模型2的动作力,使得对象动态模型2的运动状态量(对象模型速度)基于移动计划 并且还确定对象动态模型2的运动状态量(对象模型速度)的操纵变量,使得实际对象位置与期望对象位置之间的差近似为零,然后输入确定的动作力和 操纵变量到对象动态模型2,以顺序确定所需的对象位置。 此外,根据确定的反作用力确定从物体到机器人的期望的物体反作用力。 这种布置使机器人执行移动物体的操作,同时通过确定物体的期望运动和物体与机器人之间的作用力的期望值来确保机器人的稳定性,同时使运动状态 对象上的对象动态模型和实际运动状态。