会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明申请
    • DOWNHOLE DYNAMICS MEASUREMENTS USING ROTATING NAVIGATION SENSORS
    • 使用旋转导航传感器的井下动力学测量
    • US20130124095A1
    • 2013-05-16
    • US13293944
    • 2011-11-10
    • Junichi Sugiura
    • Junichi Sugiura
    • G06F19/00
    • G06F19/00E21B7/04E21B44/00E21B47/0006G01H11/00
    • A method for making downhole dynamics measurements using rotating navigational sensors includes rotating navigational accelerometers in a subterranean borehole to obtain a string of accelerometer measurements while rotating. The measurements are differentiated to obtain a string of differentiated accelerometer measurements and may then be further processed to obtain a drill string vibration parameter. Substantially simultaneous magnetometer measurements may be obtained and utilized to compute a corrected vibration parameter in which at least one of a gravitational acceleration component, a tangential acceleration component, and a centripetal acceleration component is removed from the vibration parameter.
    • 使用旋转导航传感器进行井下动力学测量的方法包括在地下钻孔中的旋转导航加速度计,以在旋转时获得一串加速度计测量值。 差分测量以获得一系列不同的加速度计测量值,然后进一步处理以获得钻柱振动参数。 可以获得基本上同时的磁力计测量并用于计算校正的振动参数,其中从振动参数中去除重力加速度分量,切向加速度分量和向心加速度分量中的至少一个。
    • 22. 发明授权
    • Gravity azimuth measurement at a non-rotating housing
    • 在非旋转外壳的重力方位测量
    • US07725263B2
    • 2010-05-25
    • US11805213
    • 2007-05-22
    • Junichi Sugiura
    • Junichi Sugiura
    • G01V7/00
    • E21B47/022
    • Aspects of this invention include methods for surveying a subterranean borehole. In one exemplary aspect, a change in borehole azimuth between first and second longitudinally spaced gravity measurement sensors may be determined directly from gravity measurements made by the sensors and a measured angular position between the sensors. The gravity measurement sensors are typically disposed to rotate freely with respect to one another about a longitudinal axis of the borehole. Gravity MWD measurements in accordance with the present invention may be advantageously made without imposing any relative rotational constraints on first and second gravity sensor sets. The present invention also advantageously provides for downhole processing of the change in azimuth between the first and second gravity sensor sets. As such, Gravity MWD measurements in accordance with this invention may be advantageously utilized in closed-loop steering control methods.
    • 本发明的方面包括测量地下钻孔的方法。 在一个示例性方面,第一和第二纵向间隔的重力测量传感器之间的钻孔方位角的变化可以直接由传感器所做的重力测量和传感器之间的测量的角位置来确定。 重力测量传感器通常设置成围绕钻孔的纵向轴线相对于彼此自由旋转。 可以有利地实现根据本发明的重力MWD测量,而不对第一和第二重力传感器组施加任何相对旋转约束。 本发明还有利地提供了在第一和第二重力传感器组之间的方位角变化的井下处理。 因此,根据本发明的重力MWD测量可以有利地用于闭环转向控制方法中。
    • 23. 发明申请
    • Closed-Loop Control of Rotary Steerable Blades
    • 旋转导向叶片的闭环控制
    • US20090166086A1
    • 2009-07-02
    • US12396794
    • 2009-03-03
    • Junichi Sugiura
    • Junichi Sugiura
    • E21B7/08E21B44/00
    • E21B7/062E21B47/08
    • A steering tool has a controller configured to provide closed-loop control of blade pressure and position. In one embodiment, the controller is configured to execute a directional control methodology in which the drilling direction is controlled via control of the blade position. The pressure in each blade is further controlled within a predetermined range of pressures. This embodiment tends to prevent excessive borehole friction while at the same time reducing undesirable rotation of the blade housing. In another embodiment, the controller is configured to correlate blade pressure measurements and blade position measurements during drilling. The correlation is utilized as part of a secondary directional control scheme in the event of a downhole failure of a blade position and/or pressure sensor. This embodiment tends to provide a stable and reliable backup directional control mechanism in the event a sensor failure and therefore may save considerable rig time.
    • 转向工具具有控制器,其被配置为提供叶片压力和位置的闭环控制。 在一个实施例中,控制器被配置为执行方向控制方法,其中通过刀片位置的控制来控制钻削方向。 每个叶片中的压力进一步控制在预定的压力范围内。 该实施例倾向于防止过度的钻孔摩擦,同时减少叶片壳体的不期望的旋转。 在另一个实施例中,控制器被配置成在钻孔期间使刀片压力测量值和刀片位置测量值相关。 在叶片位置和/或压力传感器的井下故障的情况下,相关性被用作次要方向控制方案的一部分。 该实施例倾向于在传感器故障的情况下提供稳定和可靠的备用方向控制机构,因此可以节省可观的钻机时间。
    • 24. 发明申请
    • Non-contact capacitive datalink for a downhole assembly
    • 用于井下组件的非接触电容式数据链路
    • US20090058675A1
    • 2009-03-05
    • US11897597
    • 2007-08-31
    • Junichi Sugiura
    • Junichi Sugiura
    • G01V3/10E21B43/00
    • G01V11/002E21B17/028
    • Aspects of this invention include a downhole assembly having a non-contact, capacitive coupling including first and second transceivers deployed in corresponding first and second downhole tool members. The capacitive coupling is disposed to transfer electrical signals between the first and second transceivers. In one exemplary embodiment, the capacitive coupling is configured to transfer data and power between a substantially non-rotating tool member and a rotating tool member, for example, the shaft and blade housing in a steering tool. Exemplary embodiments of this invention provide a non-contact, high-speed data communication channel between first and second members of a downhole assembly. Moreover, exemplary embodiments of the invention also provide for simultaneous non-contact transmission of electrical power between the first and second tool members.
    • 本发明的方面包括具有非接触电容耦合的井下组件,其包括部署在相应的第一和第二井下工具构件中的第一和第二收发器。 电容耦合被布置成在第一和第二收发器之间传送电信号。 在一个示例性实施例中,电容耦合被配置为在基本上不旋转的工具构件和旋转工具构件(例如,转向工具中的轴和刀片壳体)之间传送数据和动力。 本发明的示例性实施例提供了井下组件的第一和第二构件之间的非接触式高速数据通信通道。 此外,本发明的示例性实施例还提供了在第一和第二工具构件之间的同时非接触式电力传输。
    • 26. 发明授权
    • Non-contact capacitive datalink for a downhole assembly
    • 用于井下组件的非接触电容式数据链路
    • US08102276B2
    • 2012-01-24
    • US11897597
    • 2007-08-31
    • Junichi Sugiura
    • Junichi Sugiura
    • G01V3/00
    • G01V11/002E21B17/028
    • Aspects of this invention include a downhole assembly having a non-contact, capacitive coupling including first and second transceivers deployed in corresponding first and second downhole tool members. The capacitive coupling is disposed to transfer electrical signals between the first and second transceivers. In one exemplary embodiment, the capacitive coupling is configured to transfer data and power between a substantially non-rotating tool member and a rotating tool member, for example, the shaft and blade housing in a steering tool. Exemplary embodiments of this invention provide a non-contact, high-speed data communication channel between first and second members of a downhole assembly. Moreover, exemplary embodiments of the invention also provide for simultaneous non-contact transmission of electrical power between the first and second tool members.
    • 本发明的方面包括具有非接触电容耦合的井下组件,其包括部署在相应的第一和第二井下工具构件中的第一和第二收发器。 电容耦合被布置成在第一和第二收发器之间传送电信号。 在一个示例性实施例中,电容耦合被配置为在基本上不旋转的工具构件和旋转工具构件(例如,转向工具中的轴和刀片壳体)之间传送数据和动力。 本发明的示例性实施例提供了井下组件的第一和第二构件之间的非接触式高速数据通信通道。 此外,本发明的示例性实施例还提供了在第一和第二工具构件之间的同时非接触式电力传输。
    • 29. 发明授权
    • Non-azimuthal and azimuthal formation evaluation measurement in a slowly rotating housing
    • 在缓慢旋转的外壳中进行非方位角和方位角测量
    • US07950473B2
    • 2011-05-31
    • US12276485
    • 2008-11-24
    • Junichi Sugiura
    • Junichi Sugiura
    • E21B47/022E21B7/04
    • E21B17/1014E21B7/062E21B47/02
    • A steering tool configured for making azimuthal and non-azimuthal formation evaluation measurements is disclosed. In one embodiment a rotary steerable tool includes at least one formation evaluation sensor deployed in the steering tool housing. The steering tool may include, for example, first and second circumferentially opposed formation evaluation sensors or first, second, and third formation evaluation sensors, each of which is radially offset and circumferentially aligned with a corresponding one of the steering tool blades. The invention further includes methods for geosteering in which a rotation rate of the steering tool housing in the borehole (and therefore the rotation rate of the formation evaluation sensors) is controlled. Steering decisions may be made utilizing the formation evaluation measurements and/or derived borehole images.
    • 公开了一种配置用于进行方位角和非方位角地层评估测量的转向工具。 在一个实施例中,旋转可转向工具包括部署在转向工具壳体中的至少一个地层评估传感器。 转向工具可以包括例如第一和第二周向相对的地层评估传感器或第一,第二和第三地层评估传感器,每个传感器径向偏移并与对应的一个转向工具叶片周向对准。 本发明还包括用于地理导向的方法,其中转向工具壳体在钻孔中的旋转速率(因此地层评估传感器的旋转速率)被控制。 可以使用地层评估测量和/或导出的钻孔图像来进行转向决定。
    • 30. 发明授权
    • Apparatus and method for downhole dynamics measurements
    • 用于井下动力学测量的装置和方法
    • US07571643B2
    • 2009-08-11
    • US11454019
    • 2006-06-15
    • Junichi Sugiura
    • Junichi Sugiura
    • E21B44/00
    • E21B47/00E21B7/062E21B44/00E21B45/00E21B47/024E21B47/12
    • Aspects of this invention include a rotary steerable steering tool having a sensor arrangement for measuring downhole dynamic conditions. Rotary steerable tools in accordance with this invention include a rotation rate measurement device disposed to measure a difference in rotation rates between a drive shaft and an outer, substantially non-rotating housing. A controller is configured to determine a stick/slip parameter from the rotation rate measurements. Exemplary embodiments may also optionally include a tri-axial accelerometer arrangement deployed in the housing for measuring lateral vibrations and bit bounce. Downhole measurement of stick/slip and other vibration components during drilling advantageously enables corrective measures to be implemented when dangerous dynamic conditions are encountered.
    • 本发明的方面包括具有用于测量井下动态条件的传感器装置的旋转可转向转向工具。 根据本发明的旋转转向工具包括旋转速率测量装置,其设置成测量驱动轴和外部基本上不旋转的壳体之间的旋转速率差。 控制器被配置为根据旋转速率测量来确定棒/滑动参数。 示例性实施例还可以可选地包括布置在壳体中的用于测量横向振动和钻头反弹的三轴加速度计布置。 在钻井期间的井下测量棒/滑动和其他振动部件有利于在遇到危险的动态条件时实施纠正措施。