会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 25. 发明授权
    • Method of amplifying optical signals using erbium-doped materials with extremely broad bandwidths
    • 使用具有极宽带宽的铒掺杂材料放大光信号的方法
    • US06469825B1
    • 2002-10-22
    • US09628731
    • 2000-07-28
    • Michel J. F. DigonnetHiroshi NoguchiMartin M. Fejer
    • Michel J. F. DigonnetHiroshi NoguchiMartin M. Fejer
    • H01S300
    • C03C3/062C03C3/125C03C13/046C03C13/048H01S3/0637H01S3/06716H01S3/06754H01S3/1608H01S3/1618H01S3/1638H01S3/1643
    • In a method of amplifying optical input signals over a wide bandwidth, the optical input signals are applied to an optical waveguide made from a rare-earth-doped amorphous yttrium aluminum oxide material (e.g., erbium-doped yttrium aluminum oxide material). The optical input signals include optical signals having wavelengths shorter than 1,520 nanometers and optical signals having wavelengths longer than 1,610 nanometers. Preferably, the wavelengths range from as short as approximately 1,480 nanometers to as long as approximately 1,650 nanometers. Pump light is applied to the optical waveguide to cause the waveguide to provide optical gain to the optical input signals. The optical gain causes the optical signals to be amplified within the waveguide to provide amplified optical signals over the extended range from approximately 1,480 nanometers to approximately 1,650 nanometers, including, in particular, optical signals having wavelengths shorter than 1,520 nanometers and optical signals having wavelengths longer than 1,610 nanometers. Alternatively, the wavelengths of the optical input signals may be in the range from approximately 1,480 nanometers to approximately 1,565 nanometers. As a further alternative, the wavelengths of the optical input signals may be in the range from approximately 1,565 nanometers to approximately 1,650 nanometers.
    • 在宽带宽放大光输入信号的方法中,光输入信号被施加到由稀土掺杂的无定形钇铝氧化物材料(例如掺铒氧化铝材料)制成的光波导。 光输入信号包括波长短于1520纳米的光信号和波长长于1610纳米的光信号。 优选地,波长范围从约1,480纳米到长达约1,650纳米。 泵浦光被施加到光波导以使波导对光输入信号提供光增益。 光学增益使得光信号在波导内被放大,以在从大约1,480纳米到大约1,650纳米的扩展范围内提供放大的光信号,包括特别是具有短于1,520纳米的波长的光信号和具有波长更长的光信号 比1,610纳米。 或者,光输入信号的波长可以在从大约1,480纳米到大约1,565纳米的范围内。 作为另一替代方案,光输入信号的波长可以在大约1565纳米到大约1,650纳米的范围内。
    • 26. 发明授权
    • Apparatus and method for quasi-phase-matched nonlinear frequency mixing between different transverse width modes
    • 不同横向宽度模式之间的准相位匹配非线性频率混合的装置和方法
    • US06970276B2
    • 2005-11-29
    • US10444934
    • 2003-05-22
    • Jonathan R. KurzMartin M. Fejer
    • Jonathan R. KurzMartin M. Fejer
    • G02B6/12G02F1/35G02F1/377G02B26/00G02B6/00
    • G02F1/3775G02B2006/12107G02F1/3534
    • An apparatus and method for nonlinear frequency mixing of light waves relying on a nonlinear material having a nonlinear coefficient d and a waveguide fabricated in the nonlinear material. The waveguide is equipped with a quasi-phase-matching (QPM) grating extending along the length of the waveguide and endowed with an asymmetry of the nonlinear coefficient d along the width of the waveguide. The transverse asymmetry is chosen to establish a mode overlap for nonlinear frequency mixing between different transverse width modes of light. The transverse asymmetry can be odd or else neither odd nor even so as to establish mode overlap for frequency mixing between even transverse width modes and odd transverse width modes. The QPM grating can have single or multiple grating stripes that can be staggered, interleaved, angled and otherwise altered to achieve the transverse asymmetry establishing a mode overlap for frequency mixing between even transverse width modes and odd transverse width modes.
    • 一种依赖于非线性系数d的非线性材料和在非线性材料中制造的波导的光波非线性频率混合的装置和方法。 波导配备有沿着波导长度延伸的准相位匹配(QPM)光栅,并且具有沿波导宽度的非线性系数d的不对称性。 选择横向不对称以建立不同横向宽度模式之间的非线性频率混合的模式重叠。 横向不对称性可以是奇数,也可以是奇数或偶数,以便建立均匀横向宽度模式和奇数横向宽度模式之间的频率混合的模式重叠。 QPM光栅可以具有可以交错,交错,成角度或以其它方式改变的单个或多个光栅条纹,以实现横向不对称性,以建立均匀横向宽度模式和奇数横向宽度模式之间频率混合的模式重叠。
    • 27. 发明授权
    • Group-velocity mismatch compensation for optical signal processing
    • 用于光信号处理的组速度失配补偿
    • US06687042B2
    • 2004-02-03
    • US09940700
    • 2001-08-27
    • Ming-Hsien ChouMartin M. FejerJonathan Kurz
    • Ming-Hsien ChouMartin M. FejerJonathan Kurz
    • G02F1365
    • G02F1/365G02F1/3521G02F1/353G02F1/3544G02F2201/307
    • A compensated nonlinear optical frequency mixer for compensating the walk-off produced by group velocity mismatch (GVM) between interaction waves. The compensated mixer has a first mixing region in which the interaction waves participate in a non-linear optical mixing process and where walk-off occurs between the interaction waves due to GVM. The compensated mixer is equipped with a frequency selective coupling and time delay structure located after the first mixing region for eliminating the walk-off produced between the interaction waves in the first mixing region by guiding the waves in arms whose lengths differ by a re-synchronization length. A second mixing region is located after the frequency-selective coupling and time delay structure, such that when the waves emerge in phase from the frequency selective coupling and time delay structure they continue to interact efficiently in the second mixing region. The compensated nonlinear optical frequency mixer of the invention can by used to compensate for GVM in frequency mixing operations involving a material's &khgr;(2) susceptibility.
    • 一种用于补偿由相互作用波之间的群速度失配(GVM)产生的偏移的补偿非线性光学混频器。 补偿混合器具有第​​一混合区域,其中相互作用波参与非线性光学混合过程,并且由于GVM而在相互作用波之间发生偏移。 补偿混频器配备有位于第一混合区域之后的频率选择耦合和时间延迟结构,用于消除在第一混合区域中的相互作用波之间产生的离散,通过引导长度不同的臂中的波被重新同步 长度。 第二混合区域位于频率选择耦合和时间延迟结构之后,使得当波从频率选择耦合和时间延迟结构同相出现时,它们在第二混合区域中继续有效地相互作用。 本发明的补偿非线性光学混频器可以用于补偿涉及材料的(2)>磁化率的混频操作中的GVM。
    • 30. 发明授权
    • Ultrashort-pulse source with controllable wavelength output
    • 具有可控波长输出的超短脉冲源
    • US06744555B2
    • 2004-06-01
    • US09042666
    • 1998-03-17
    • Almantas GalvanauskasMark A. ArboreMartin M. FejerDonald J. Harter
    • Almantas GalvanauskasMark A. ArboreMartin M. FejerDonald J. Harter
    • G02F1365
    • G02F1/3132G01B9/02007G01B9/02014G01B9/02091G02F1/3137G02F1/335G02F1/3532G02F1/395G02F2001/3548G02F2201/124G02F2203/26
    • A multiple-wavelength ultrashort-pulse laser system includes a laser generator producing ultrashort pulses at a fixed wavelength, and at least one and preferably a plurality of wavelength-conversion channels. Preferably, a fiber laser system is used for generating single-wavelength, ultrashort pulses. An optical split switch matrix directs the pulses from the laser generator into at least one of the wavelength conversion channels. An optical combining switch matrix is disposed downstream of the wavelength-conversion channels and combines outputs from separate wavelength-conversion channels into a single output channel. Preferably, waveguides formed in a ferroelectric substrate by titanium indiffusion (TI) and/or proton exchange (PE) form the wavelength-conversion channels and the splitting and combining matrices. Use of the waveguide allows efficient optical parametric generation to occur in the wavelength-conversion channels at pulse energies achievable with a mode-locked laser source. The multiple-wavelength laser system can replace a plurality of different, single-wavelength laser systems. In its simplest form, the system can be used to convert the laser wavelength to a more favorable wavelength. For example, pulses generated at 1.55 &mgr;m by a mode-locked erbium fiber laser can be converted to 1.3 &mgr;m for use in optical coherence tomography or to wavelengths suitable for use in a display, printing or machining system.
    • 多波长超短脉冲激光系统包括产生固定波长的超短脉冲的激光发生器和至少一个,优选多个波长转换通道。 优选地,光纤激光系统用于产生单波长超短脉冲。 光分路开关矩阵将来自激光发生器的脉冲引导到至少一个波长转换通道。 光学组合开关矩阵设置在波长转换通道的下游,并将来自分离的波长转换通道的输出组合成单个输出通道。 优选地,通过钛扩散(TI)和/或质子交换(PE)在铁电衬底中形成的波导形成波长转换通道和分离和组合矩阵。 波导的使用允许在波长转换通道中以在锁模激光源可实现的脉冲能量下发生有效的光参量产生。 多波长激光系统可以代替多个不同的单波长激光系统。 在其最简单的形式中,该系统可用于将激光波长转换成更有利的波长。 例如,通过模式锁定铒光纤激光器在1.55μm生成的脉冲可以转换为1.3μm,用于光学相干断层摄影或适用于显示,印刷或加工系统的波长。