会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 22. 发明授权
    • Structure-guided image measurement method
    • 结构导向图像测量方法
    • US06456741B1
    • 2002-09-24
    • US09739084
    • 2000-12-15
    • Shih-Jong J. LeeSeho Oh
    • Shih-Jong J. LeeSeho Oh
    • G06K946
    • G06K9/4609G06T7/13
    • Structure-guided image estimation and measurement methods are described for computer vision applications. Results of the structure-guided estimation are symbolic representations of geometry entities such as lines, points, arcs and circles. The symbolic representation facilitates sub-pixel measurements by increasing the number of pixels used in the matching of image features to structural entities, improving the detection of structural entities within the image, weighting the contribution of each image sample to the measurement that is being made and optimizing that contribution. After the structure-guided estimation, geometric entities are represented by their symbolic representations. Structure-guided measurements can be conducted using the symbolic representation of the geometric entities. Measurements performed from the symbolic representation are not limited by image resolution or pixel quantization error and therefore can yield sub-pixel accuracy and repeatability.
    • 针对计算机视觉应用描述了结构引导图像估计和测量方法。 结构指导估计的结果是几何实体的象征性表示,如线,点,弧和圆。 符号表示通过增加在图像特征与结构实体的匹配中使用的像素数量来促进子像素测量,改善图像内的结构实体的检测,对每个图像样本对正在进行的测量的贡献加权,以及 优化该贡献。在结构指导估计之后,几何实体由其符号表示来表示。 可以使用几何实体的符号表示来进行结构指导测量。 从符号表示进行的测量不受图像分辨率或像素量化误差的限制,因此可以产生子像素精度和重复性。
    • 23. 发明授权
    • Teachable object contour mapping for biology image region partition
    • 用于生物图像区域划分的可对象轮廓映射
    • US09122951B2
    • 2015-09-01
    • US12925874
    • 2010-11-01
    • Shih-Jong J. LeeSeho Oh
    • Shih-Jong J. LeeSeho Oh
    • G06K9/34G06K9/00
    • G06K9/342G06K9/0014
    • A teachable object contour mapping method for region partition receives an object boundary and a teaching image. An object contour mapping recipe creation is performed using the object boundary and the teaching image to generate object contour mapping recipe output. An object contour mapping is applied to an application image using the object contour mapping recipe and the application image to generate object contour map output. An object region partition using the object contour map to generate object region partition output. An updateable object contour mapping method receives a contour mapping recipe and a validation image. An object contour mapping is performed using the object contour mapping recipe and the validation image to generate validation contour map output. An object region partition receives a region mask to generate validation object region partition output. A boundary correction is performed using the validation object region partition to generate corrected object boundary output. An update contour mapping is performed using the corrected object boundary, the validation image and the contour mapping recipe to generate updated contour mapping recipe output.
    • 区域分区的可教对象轮廓映射方法接收对象边界和教学图像。 使用对象边界和教学图像执行对象轮廓映射配方创建,以生成对象轮廓映射配方输出。 使用对象轮廓映射配方和应用图像将对象轮廓映射应用于应用图像以生成对象轮廓图输出。 对象区域分区使用对象轮廓图生成对象区域分区输出。 可更新的对象轮廓映射方法接收轮廓映射配方和验证图像。 使用对象轮廓映射配方和验证图像执行对象轮廓映射以生成验证轮廓图输出。 对象区域分区接收区域掩码以生成验证对象区域分区输出。 使用验证对象区域分区执行边界校正,以生成校正对象边界输出。 使用校正的对象边界,验证图像和轮廓映射配方来执行更新轮廓映射以生成更新的轮廓映射配方输出。
    • 24. 发明申请
    • Method of directed pattern enhancement for flexible recognition
    • 用于灵活识别的定向图案增强方法
    • US20100092075A1
    • 2010-04-15
    • US12587157
    • 2009-10-02
    • Shih-Jong J. LeeSeho Oh
    • Shih-Jong J. LeeSeho Oh
    • G06K9/62G06K9/40G06K9/48
    • G06K9/6219G06K9/38G06K9/6277
    • A directed pattern enhancement method receives a learning image and pattern enhancement directive. Pattern enhancement learning is performed using the learning image and the pattern enhancement directive to generate pattern enhancement recipe. An application image is received and a pattern enhancement application is performed using the application image and the pattern enhancement recipe to generate pattern enhanced image. A recognition thresholding is performed using the pattern enhanced image to generate recognition result. The pattern enhancement directive consists of background directive, patterns to enhance directive, and patterns to suppress directive. An update learning method performs pattern enhancement progressive update learning.
    • 定向图案增强方法接收学习图像和图案增强指令。 使用学习图像和图案增强指令执行图案增强学习以产生图案增强配方。 接收应用图像,并且使用应用图像和图案增强配方来执行图案增强应用以生成图案增强图像。 使用图案增强图像执行识别阈值以产生识别结果。 模式增强指令包括背景指令,增强指令的模式和抑制指令的模式。 更新学习方法执行模式增强渐进式更新学习。
    • 25. 发明授权
    • Object based boundary refinement method
    • 基于对象的边界细化方法
    • US07466872B2
    • 2008-12-16
    • US11165561
    • 2005-06-20
    • Seho OhShih-Jong J. Lee
    • Seho OhShih-Jong J. Lee
    • G06K9/40G06K9/42G06K9/44
    • G06K9/0014G06K9/34G06T7/0012G06T7/12G06T7/155G06T2207/20104G06T2207/20192G06T2207/30024
    • An object based boundary refinement method for object segmentation in digital images receives an image and a single initial object region of interest and performs refinement zone definition using the initial object regions of interest to generate refinement zones output. A directional edge enhancement is performed using the input image and the refinement zones to generate directional enhanced region of interest output. A radial detection is performed using the input image the refinement zones and the directional enhanced region of interest to generate radial detection mask output. In addition, a final shaping is performed using the radial detection mask having single object region output.A directional edge enhancement method determining pixel specific edge contrast enhancement direction according to the object structure direction near the pixel consists receives an image and refinement zones and performs 1D horizontal distance transform and 1D vertical distance transform using the refinement zones to generate horizontal distance map and vertical distance map outputs. A neighboring direction determination is performed using the horizontal distance map and the vertical distance map to generate neighboring image output. In addition, a directional edge contrast calculation using the neighboring image and input image having directional enhanced region of interest output.
    • 用于数字图像中对象分割的基于对象的边界细化方法接收图像和感兴趣的单个初始对象区域,并使用感兴趣的初始对象区域执行细化区域定义,以生成细化区域输出。 使用输入图像和细化区域来执行方向边缘增强以产生方向增强的兴趣区域输出。 使用输入图像进行径向检测,该细化区域和方向增强区域用于产生径向检测掩模输出。 另外,使用具有单个物体区域输出的径向检测掩模进行最终成形。 根据像素附近的物体结构方向确定像素特征边缘对比度增强方向的方向边缘增强方法包括接收图像和细化区域,并使用细化区域进行1D水平距离变换和1D垂直距离变换,以生成水平距离图和垂直 距离图输出。 使用水平距离图和垂直距离图执行相邻方向确定以生成相邻图像输出。 另外,使用相邻图像的方向边缘对比度计算和具有方向增强感兴趣区域输出的输入图像。
    • 27. 发明申请
    • Spatial-temporal regulation method for robust model estimation
    • 鲁棒模型估计的时空调节方法
    • US20080056589A1
    • 2008-03-06
    • US11516351
    • 2006-09-05
    • Shih-Jong J. LeeSeho OhHansang Cho
    • Shih-Jong J. LeeSeho OhHansang Cho
    • G06K9/36G06K9/46
    • G06K9/036G06K9/0014G06K9/40
    • A computerized spatial-temporal regulation method for accurate spatial-temporal model estimation receives a spatial temporal sequence containing object confidence mask. A spatial-temporal weight regulation is performed to generate weight sequence output. A weighted model estimation is performed using the spatial temporal sequence and the weight sequence to generate at least one model parameter output. An iterative weight update is performed to generate weight sequence output. A weighted model estimation is performed to generate estimation result output. A stopping criteria is checked and the next iteration iterative weight update and weighted model estimation is performed until the stopping criteria is met. A model estimation is performed to generate model parameter output. An outlier data identification is performed to generate outlier data output. A spatial-temporal data integrity check is performed and the outlier data is disqualified.
    • 用于精确空间 - 时间模型估计的计算机空间 - 时间调节方法接收包含对象置信掩模的空间时间序列。 执行空间 - 时间权重调节以产生权重序列输出。 使用空间时间序列和权重序列来执行加权模型估计,以生成至少一个模型参数输出。 执行迭代权重更新以产生权重序列输出。 执行加权模型估计以产生估计结果输出。 检查停止标准,并执行下一次迭代迭代权重更新和加权模型估计,直到满足停止标准。 执行模型估计以产生模型参数输出。 执行异常值数据识别以产生离群数据输出。 执行空间 - 时间数据完整性检查,异常值数据被取消资格。