会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 22. 发明授权
    • System and method providing improved head motion estimations for animation
    • US07020305B2
    • 2006-03-28
    • US09731481
    • 2000-12-06
    • Zicheng LiuZhengyou Zhang
    • Zicheng LiuZhengyou Zhang
    • G06K9/00
    • G06K9/00248G06T7/251G06T7/70G06T2207/10016G06T2207/30201
    • The system provides improved procedures to estimate head motion between two images of a face. Locations of a number of distinct facial features are identified in two images. The identified locations can correspond to the eye comers, mouth corners and nose tip. The locations are converted into as a set of physical face parameters based on the symmetry of the identified distinct facial features. The set of physical parameters reduces the number of unknowns as compared to the number of equations used to determine the unknowns. An initial head motion estimate is determined by: (a) estimating each of the set of physical parameters, (b) estimating a first head pose transform corresponding to the first image, and (c) estimating a second head pose transform corresponding to the second image. The head motion estimate can be incorporated into a feature matching algorithm to refine the head motion estimation and the physical facial parameters. In one implementation, an inequality constraint is placed on a particular physical parameter—such as a nose tip, such that the parameter is constrained within a predetermined minimum and maximum value. The inequality constraint is converted to an equality constraint by using a penalty function. Then, the inequality constraint is used during the initial head motion estimation to add additional robustness to the motion estimation.
    • 24. 发明申请
    • System and method providing improved head motion estimations for animation
    • 系统和方法为动画提供改进的头部运动估计
    • US20050074145A1
    • 2005-04-07
    • US11000603
    • 2004-12-01
    • Zicheng LiuZhengyou Zhang
    • Zicheng LiuZhengyou Zhang
    • G06T7/00G06T7/20G06T13/00G06T15/70G06K9/00
    • G06K9/00248G06T7/251G06T7/70G06T2207/10016G06T2207/30201
    • Systems and methods to estimate head motion between two images of a face are described. In one aspect, locations of a plurality of distinct facial features in the two images are identified. The locations correspond to a number of unknowns that are determined upon estimation of head motion. The number of unknowns are determined by a number of equations. The identified locations are converted into a set of physical face parameters based on the symmetry of the distinct facial features. The set of physical face parameters reduce the number of unknowns as compared to the number of equations used to determine the unknowns. An inequality constraint is added to a particular face parameter of the physical face parameters, such that the particular face parameter is constrained within a predetermined minimum and maximum value. The inequality constraint is converted to an equality constraint using a penalty function. Head motion is estimated from identified points in the two images. The identified points are based on the set of physical face parameters.
    • 描述用于估计面部的两个图像之间的头部运动的系统和方法。 在一个方面,识别两个图像中的多个不同的面部特征的位置。 这些位置对应于在估计头部运动时确定的许多未知数。 未知数的数量由多个等式确定。 基于不同的面部特征的对称性,将识别的位置转换成一组物理面部参数。 与用于确定未知数的等式的数量相比,物理面参数的集合减少未知数的数量。 将不等式约束添加到物理面部参数的特定面部参数,使得特定面部参数被限制在预定的最小值和最大值内。 不等式约束使用惩罚函数转换为等式约束。 从两个图像中的识别点估计头部运动。 识别的点是基于物理面参数的集合。
    • 28. 发明授权
    • Learning image enhancement
    • 学习图像增强
    • US08175382B2
    • 2012-05-08
    • US11801620
    • 2007-05-10
    • Zicheng LiuCha ZhangZhengyou Zhang
    • Zicheng LiuCha ZhangZhengyou Zhang
    • G06K9/00
    • G06K9/00234H04N1/62H04N1/628
    • Image enhancement techniques are described to enhance an image in accordance with a set of training images. In an implementation, an image color tone map is generated for a facial region included in an image. The image color tone map may be normalized to a color tone map for a set of training images so that the image color tone map matches the map for the training images. The normalized color tone map may be applied to the image to enhance the in-question image. In further implementations, the procedure may be updated when the average color intensity in non-facial regions differs from an accumulated mean by a threshold amount.
    • 描述图像增强技术以根据一组训练图像来增强图像。 在实现中,为包括在图像中的面部区域生成图像色调映射。 图像色调图可以被归一化为用于一组训练图像的色调图,使得图像色调图匹配训练图像的图。 归一化色调图可以应用于图像以增强问题图像。 在进一步的实施中,当非面部区域中的平均颜色强度与积累的平均值不同阈值量时,可以更新该过程。
    • 29. 发明申请
    • HIERARCHICAL FILTERED MOTION FIELD FOR ACTION RECOGNITION
    • 分层过滤运动场作用识别
    • US20110311137A1
    • 2011-12-22
    • US12820143
    • 2010-06-22
    • Zicheng LiuYingli TianLiangliang CaoZhengyou Zhang
    • Zicheng LiuYingli TianLiangliang CaoZhengyou Zhang
    • G06K9/34
    • G06K9/4642G06K9/6277G06T7/246G06T2207/30196
    • Described is a hierarchical filtered motion field technology such as for use in recognizing actions in videos with crowded backgrounds. Interest points are detected, e.g., as 2D Harris corners with recent motion, e.g. locations with high intensities in a motion history image (MHI). A global spatial motion smoothing filter is applied to the gradients of MHI to eliminate low intensity corners that are likely isolated, unreliable or noisy motions. At each remaining interest point, a local motion field filter is applied to the smoothed gradients by computing a structure proximity between sets of pixels in the local region and the interest point. The motion at a pixel/pixel set is enhanced or weakened based on its structure proximity with the interest point (nearer pixels are enhanced).
    • 描述了一种分层过滤的运动场技术,例如用于识别具有拥挤背景的视频中的动作。 检测到兴趣点,例如,作为具有最近运动的2D哈里斯角,例如, 在运动历史图像(MHI)中具有高强度的位置。 将全局空间运动平滑滤波器应用于MHI的梯度以消除可能是孤立的,不可靠的或噪声运动的低强度拐角。 在每个剩余的兴趣点处,通过计算局部区域中的像素集合和兴趣点之间的结构接近度,将局部运动场滤波器应用于平滑的梯度。 基于其与兴趣点的结构接近(更近的像素被增强),像素/像素集合处的运动被增强或削弱。
    • 30. 发明授权
    • Recovering parameters from a sub-optimal image
    • 从次优图像中恢复参数
    • US08009880B2
    • 2011-08-30
    • US11747695
    • 2007-05-11
    • Zhengyou ZhangZicheng LiuGang HuaYang Wang
    • Zhengyou ZhangZicheng LiuGang HuaYang Wang
    • G06K9/00G06K9/56G09G5/00
    • G06K9/00268G06K9/4661G06T7/11G06T2207/30201
    • A subregion-based image parameter recovery system and method for recovering image parameters from a single image containing a face taken under sub-optimal illumination conditions. The recovered image parameters (including albedo, illumination, and face geometry) can be used to generate face images under a new lighting environment. The method includes dividing the face in the image into numerous smaller regions, generating an albedo morphable model for each region, and using a Markov Random Fields (MRF)-based framework to model the spatial dependence between neighboring regions. Different types of regions are defined, including saturated, shadow, regular, and occluded regions. Each pixel in the image is classified and assigned to a region based on intensity, and then weighted based on its classification. The method decouples the texture from the geometry and illumination models, and then generates an objective function that is iteratively solved using an energy minimization technique to recover the image parameters.
    • 一种基于子区域的图像参数恢复系统和方法,用于从包含在次优照明条件下拍摄的面部的单个图像恢复图像参数。 恢复的图像参数(包括反照率,照明和脸部几何)可用于在新的照明环境下生成脸部图像。 该方法包括将图像中的脸部划分成许多较小的区域,为每个区域生成反照变形模型,并使用基于马尔可夫随机场(MRF)的框架来模拟相邻区域之间的空间依赖关系。 定义不同类型的区域,包括饱和,阴影,常规和遮挡区域。 将图像中的每个像素分类并分配给基于强度的区域,然后基于其分类进行加权。 该方法将纹理与几何和照明模型分离,然后生成使用能量最小化技术迭代求解以恢复图像参数的目标函数。