会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 22. 发明授权
    • Method for in-process cleaning of an ion source
    • 离子源过程中清洗方法
    • US6135128A
    • 2000-10-24
    • US49642
    • 1998-03-27
    • Michael A. GrafVictor M. Benveniste
    • Michael A. GrafVictor M. Benveniste
    • H01J27/02C23C14/48H01J27/04H01J37/08H01J37/317H01L21/265B08B3/12C23F1/02G01N21/01H01J27/00
    • H01J37/3171H01J27/04H01J37/08H01J2237/022H01J2237/061
    • A method and system for in-process cleaning of an ion source (12) is provided. The ion source (12) comprises (i) a plasma chamber (22) formed by chamber walls (112, 114, 116) that bound an ionization zone (120); (ii) a source of ionizable dopant gas (66) and a first mechanism (68) for introducing said ionizable dopant gas into said plasma chamber; (iii) a source of cleaning gas (182) and a second mechanism (184) for introducing said cleaning gas into said plasma chamber; and (iv) an exciter (130) at least partially disposed within said chamber for imparting energy to said ionizable dopant gas and said cleaning gas to create a plasma within said plasma chamber. The plasma comprises disassociated and ionized constituents of said dopant gas and disassociated and ionized constituents of said cleaning gas. The disassociated and ionized constituents of said cleaning gas react with said disassociated and ionized constituents of said dopant gas to prevent formation of deposits of elements contained within said ionizable dopant gas on surfaces of said chamber walls. The cleaning gas may be, for example, nitrogen trifluoride (NF.sub.3), and the ionizable dopant gas may be, for example, either phosphine (PH.sub.3) or arsine (AsH.sub.3). Mass flow controllers control the ratio of cleaning gas to ionizable dopant gas introduced into said plasma chamber, which is greater than 0:1 and preferably at least 3:1.
    • 提供了一种用于在过程中清洁离子源(12)的方法和系统。 离子源(12)包括(i)由结合电离区(120)的室壁(112,114,116)形成的等离子体室(22); (ii)可电离掺杂剂气体源(66)和用于将所述可电离掺杂剂气体引入所述等离子体室的第一机构(68) (iii)用于将所述清洁气体引入所述等离子体室的清洁气体源(182)和第二机构(184); 和(iv)至少部分地设置在所述腔室内的激励器(130),用于向所述可电离掺杂剂气体和所述清洁气体赋予能量以在所述等离子体腔室内产生等离子体。 所述等离子体包括所述掺杂气体的分离和离子化成分以及所述清洁气体的解离和离子化成分。 所述清洁气体的分离和离子化的组分与所述掺杂剂气体的所述分离和离子化的组分反应,以防止在所述室壁的表面上形成包含在所述可电离掺杂剂气体内的元素沉积物。 清洁气体可以是例如三氟化氮(NF 3),并且可电离掺杂剂气体可以是例如磷化氢(PH 3)或胂(AsH 3)。 质量流量控制器控制导入所述等离子体室的清洁气体与可离子化掺杂剂气体的比例大于0:1,优选至少3:1。
    • 26. 发明授权
    • Ion implanter target chamber
    • 离子注入机靶室
    • US4672210A
    • 1987-06-09
    • US772237
    • 1985-09-03
    • Allen E. ArmstrongVictor M. BenvenisteGeoffrey Ryding
    • Allen E. ArmstrongVictor M. BenvenisteGeoffrey Ryding
    • H01L21/265H01J37/317H01L21/00H01J37/00
    • H01L21/67011H01J37/3171
    • A target chamber for a mechanically scanned ion implanter in which semiconductor wafers are maintained in contact with a rotating target disk entirely by body forces, thus eliminating the need for clamping members contacting the wafer surface. The axis of the disk is inclined, and the disk is in the form of a shallow dish having an inclined rim with cooled wafer-receiving stations formed on the inner surface of the rim. Centrifugal force is relied on to force the wafers against the cooled disk. Each wafer-receiving station includes fence structures which are engaged by the wafer during loading and when the disk is spinning. The fence structures are resilient so that wafer damage and thus particulate contamination is minimized. In accordance with another aspect of the invention the ion beam is projected against the wafers obliquely to the radius of the disk as to minimize striping effects and overscan.
    • 用于机械扫描离子注入机的目标室,其中半导体晶片通过体力保持与旋转目标盘保持接触,从而消除了与晶片表面接触的夹紧构件的需要。 盘的轴线倾斜,并且盘是具有倾斜边缘的浅盘的形式,其中冷却的晶片接收站形成在边缘的内表面上。 依靠离心力将晶片压在冷却盘上。 每个晶片接收站包括在加载期间和当盘旋转时由晶片接合的栅栏结构。 栅栏结构具有弹性,使得晶片损坏和因此的颗粒污染被最小化。 根据本发明的另一方面,离子束相对于盘的半径倾斜地抵靠晶片,以最小化条纹效应和过扫描。
    • 27. 发明授权
    • High resolution radiation detector
    • 高分辨率辐射探测器
    • US4303860A
    • 1981-12-01
    • US61739
    • 1979-07-30
    • Paul J. BjorkholmVictor M. Benveniste
    • Paul J. BjorkholmVictor M. Benveniste
    • G01N23/04A61B6/00A61B6/03G01N23/08G01T1/164G01T1/20G21K4/00H01J37/244G01T1/24
    • G01T1/2018G01T1/1644
    • A high resolution detector having a scintillation crystal for receiving incident X-rays at a front face and interacting with the radiation to generate corresponding visible light radiation. Silicon photodiode arrays are positioned on top and bottom lateral faces of the scintillation crystal to receive the visible light that is radiated laterally with respect to the direction of propagation of the incident X-rays. Photodiode elements in each photodiode array extend from the forward face of the scintillation crystal in the direction of propagation of the incident X-rays. The length of the photodiode elements determines the radiation stopping power of the high resolution detector and the height of the front face of the scintillation crystal determines the resolution of the detector. The height of the forward face of the crystal may be made small with respect to the length of the photodiode elements to provide a detector having high resolution and high radiation stopping power.
    • 一种具有闪烁晶体的高分辨率检测器,用于在正面接收入射的X射线并与辐射相互作用以产生相应的可见光辐射。 硅光电二极管阵列位于闪烁晶体的顶部和底部侧面上以接收相对于入射X射线的传播方向横向辐射的可见光。 每个光电二极管阵列中的光电二极管元件在闪烁晶体的前面沿着入射X射线的传播方向延伸。 光电二极管元件的长度决定了高分辨率检测器的辐射阻止能力,并且闪烁晶体的正面的高度决定了检测器的分辨率。 相对于光电二极管元件的长度,可以使晶体的正面的高度较小,以提供具有高分辨率和高辐射阻止能力的检测器。
    • 28. 发明授权
    • Techniques for plasma injection
    • 等离子体注入技术
    • US07723707B2
    • 2010-05-25
    • US11781700
    • 2007-07-23
    • Victor M. BenvenisteGordon AngelBon-Woong KooKourosh Saadatmand
    • Victor M. BenvenisteGordon AngelBon-Woong KooKourosh Saadatmand
    • G21G1/00
    • H01J37/3171H01J37/026H01J2237/0041H01J2237/055
    • Techniques for plasma injection for space charge neutralization of an ion beam are disclosed. In one particular exemplary embodiment, the techniques may be realized as a plasma injection system for space charge neutralization of an ion beam. The plasma injection system may comprise a first array of magnets and a second array of magnets positioned along at least a portion of an ion beam path, the first array being on a first side of the ion beam path and the second array being on a second side of the ion beam path, the first side opposing the second side. At least two adjacent magnets in the first array of magnets may have opposite polarity. The plasma injection system may also comprise a plasma source configured to generate a plasma in a region associated with a portion of the ion beam path by colliding at least some electrons with a gas.
    • 公开了用于离子束空间电荷中和的等离子体注入技术。 在一个特定的示例性实施例中,这些技术可以被实现为用于离子束的空间电荷中和的等离子体注入系统。 等离子体注入系统可以包括第一磁体阵列和沿着离子束路径的至少一部分定位的第二磁体阵列,第一阵列位于离子束路径的第一侧上,第二阵列位于第二阵列的第二阵列上 离子束路径的一侧,第一侧与第二侧相对。 第一磁体阵列中的至少两个相邻的磁体可以具有相反的极性。 等离子体注入系统还可以包括等离子体源,其被配置为通过与至少一些电子与气体碰撞而在与一部分离子束路径相关联的区域中产生等离子体。
    • 30. 发明授权
    • Methods and systems for trapping ion beam particles and focusing an ion beam
    • 用于捕获离子束粒子并聚焦离子束的方法和系统
    • US07598495B2
    • 2009-10-06
    • US11739934
    • 2007-04-25
    • Peter L. KellermanVictor M. BenvenisteAlexander S. PerelBrian S. FreerMichael A. Graf
    • Peter L. KellermanVictor M. BenvenisteAlexander S. PerelBrian S. FreerMichael A. Graf
    • H01J3/18
    • H01J37/3171H01J37/12H01J2237/022H01J2237/049
    • A focusing particle trap system for ion implantation comprising an ion beam source that generates an ion beam, a beam line assembly that receives the ion beam from the ion beam source comprising a mass analyzer that selectively passes selected ions, a focusing electrostatic particle trap that receives the ion beam and removes particles from the ion beam comprising an entrance electrode comprising an entrance aperture and biased to a first base voltage, wherein the first surface of the entrance electrode is facing away from a center electrode and is approximately flat, wherein the second surface of the entrance electrode is facing toward the center electrode and is concave, wherein the center electrode is positioned a distance downstream from the entrance electrode comprising a center aperture and biased to a center voltage, wherein the center voltage is less than the first base voltage, wherein the first surface of the center electrode is facing toward the entrance electrode and is convex, wherein the second surface of the center electrode is facing away from the entrance electrode and is approximately flat, an exit electrode positioned a distance downstream from the center electrode comprising an exit aperture and biased to a second base voltage, and wherein the first surface of the exit electrode is facing toward the center electrode and is approximately flat, wherein the second surface of the exit electrode is facing away from the center electrode and is approximately flat, wherein a first electrostatic field is generated from the entrance electrode toward the center electrode and a second electrostatic field is generated from the exit electrode toward the center electrode; wherein the second base voltage is greater than the center voltage, and an end station that is downstream from the beam line assembly and receives the ion beam.
    • 一种用于离子注入的聚焦粒子捕获系统,包括产生离子束的离子束源,接收来自离子束源的离子束的束线组件,该束束组件包括选择性地通过选定离子的质量分析器,接收 离子束并且从离子束中除去包含入口电极并且被偏置到第一基极电压的入口电极的颗粒,其中入口电极的第一表面背离中心电极并且近似平坦,其中第二表面 所述入口电极面向所述中心电极并且是凹形的,其中所述中心电极位于与所述入口电极的下游距离的位置,所述入口电极包括中心孔并被偏压到中心电压,其中所述中心电压小于所述第一基极电压, 其中所述中心电极的所述第一表面面向所述入口电极并且被连接 vex,其中所述中心电极的所述第二表面背离所述入口电极并且近似平坦,所述出口电极在所述中心电极的下游距离包括出口孔并且被偏压到第二基极电压,并且其中所述第一表面 所述出射电极的面向所述中心电极并且近似平坦,其中所述出射电极的所述第二表面背离所述中心电极并且近似平坦,其中从所述入射电极朝向所述中心电极产生第一静电场 并且从出射电极向中心电极产生第二静电场; 其中所述第二基极电压大于所述中心电压,以及在所述束线组件的下游并接收所述离子束的端站。