会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明申请
    • Microelectromechanical resonator structure, and method of designing, operating and using same
    • 微机电谐振器结构及其设计,操作和使用方法
    • US20060261915A1
    • 2006-11-23
    • US11132941
    • 2005-05-19
    • Markus LutzAaron Partridge
    • Markus LutzAaron Partridge
    • H03H9/00
    • H03H9/2431H03H9/02259H03H9/02338H03H9/02448H03H9/2405H03H2009/02354H03H2009/02496H03H2009/02503H03H2009/02511H03H2009/02527
    • A micromechanical resonator structure including a plurality of straight or substantially straight beam sections that are connected by curved or rounded sections. Each elongated beam section is connected to another elongated beam section at a distal end via the curved or rounded sections thereby forming a geometric shape having at least two elongated beam sections that are interconnected via curved or rounded sections (for example, a rounded triangle shape, rounded square or rectangle shape). The structure includes one or more nodal points or areas (i.e., portions of the resonator structure that are stationary, experience little movement, and/or are substantially stationary during oscillation of the resonator structure) in one or more portions or areas of the curved sections of the structure. The nodal points are suitable and/or preferable locations to anchor the resonator structure to the substrate. In operation, the resonator structure oscillates in a combined elongating (or breathing) mode and bending mode; that is, the beam sections (which oscillate or vibrate at the same frequency) exhibit an elongating-like (or breathing-like) motion and a bending-like motion.
    • 微机械谐振器结构包括通过弯曲或圆形部分连接的多个直的或基本上直的梁部分。 每个细长梁部分经由弯曲或圆形部分在远端处连接到另一个细长梁部分,从而形成具有至少两个细长梁部分的几何形状,所述细长梁部分经由弯曲或圆形部分(例如,圆形三角形形状, 圆形正方形或矩形)。 该结构包括在弯曲部分的一个或多个部分或区域中的一个或多个节点或区域(即,谐振器结构的静止的部分,经历少量运动和/或在谐振器结构的振荡期间基本静止) 的结构。 节点是合适的和/或优选的位置以将谐振器结构锚固到基底。 在操作中,谐振器结构以组合延长(或呼吸)模式和弯曲模式振荡; 也就是说,以相同频率振荡或振动的光束部分呈现伸长状(或呼吸状)运动和弯曲状运动。
    • 23. 发明授权
    • Microelectromechanical systems and devices having thin film encapsulated mechanical structures
    • 具有薄膜封装的机械结构的微机电系统和装置
    • US07075160B2
    • 2006-07-11
    • US10454867
    • 2003-06-04
    • Aaron PartridgeMarkus LutzSilvia Kronmueller
    • Aaron PartridgeMarkus LutzSilvia Kronmueller
    • H01L27/14H01L29/82H01L29/84
    • B81C1/00261B81B2207/015B81C1/00333B81C2201/0176B81C2203/0136H01L2924/0002H01L2924/00
    • There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures encapsulated in a chamber prior to final packaging. The material that encapsulates the mechanical structures, when deposited, includes one or more of the following attributes: low tensile stress, good step coverage, maintains its integrity when subjected to subsequent processing, does not significantly and/or adversely impact the performance characteristics of the mechanical structures in the chamber (if coated with the material during deposition), and/or facilitates integration with high-performance integrated circuits. In one embodiment, the material that encapsulates the mechanical structures is, for example, silicon (polycrystalline, amorphous or porous, whether doped or undoped), silicon carbide, silicon-germanium, germanium, or gallium-arsenide.
    • 这里描述和说明了许多发明。 在一个方面,本发明涉及MEMS器件,以及制造或制造MEMS器件的技术,其具有在最终封装之前封装在腔室中的机械结构。 当沉积时,封装机械结构的材料包括以下属性中的一个或多个:低拉伸应力,良好的阶梯覆盖,在经受后续加工时保持其完整性,不会显着和/或不利地影响 室中的机械结构(如果在沉积期间涂覆材料)和/或促进与高性能集成电路的集成。 在一个实施例中,封装机械结构的材料是例如硅(多晶,无定形或多孔,无论掺杂或未掺杂),碳化硅,硅 - 锗,锗或砷化镓。
    • 25. 发明授权
    • Micromechanical component and method for producing the same
    • 微机械部件及其制造方法
    • US07041225B2
    • 2006-05-09
    • US10240339
    • 2001-03-10
    • Markus Lutz
    • Markus Lutz
    • C23F1/00
    • B81C1/00333B81B2201/0235B81C2203/0136
    • A method of manufacturing a micromechanical component having the following steps is described: providing a substrate (1); providing a first micromechanical functional layer (5) on the sacrificial layer (4); structuring the first micromechanical functional layer (5) in such a manner that it is provided with a mobilizable sensor structure (6); providing and structuring a first sealing layer (8) on the structured first micromechanical functional layer (5); providing and structuring a second micromechanical functional layer (10) on the first sealing layer (8) which has at least a covering function and is at least partially anchored in the first micromechanical functional layer (5); making the sensor structure (6) movable and providing a second sealing layer (8) on the second micromechanical functional layer (10). A corresponding micromechanical component is also described.
    • 描述了制造具有以下步骤的微机械部件的方法:提供基板(1); 在所述牺牲层(4)上提供第一微机械功能层(5); 以使其设置有可调动传感器结构(6)的方式构造第一微机械功能层(5); 在所述结构化的第一微机械功能层(5)上提供和构造第一密封层(8); 在所述第一密封层(8)上提供和构造具有至少覆盖功能并且至少部分地锚定在所述第一微机械功能层(5)中的第一密封层(8)上的第二微机械功能层(10)。 使所述传感器结构(6)可移动并在所述第二微机械功能层(10)上提供第二密封层(8)。 还描述了相应的微机械部件。
    • 26. 发明授权
    • Frequency and/or phase compensated microelectromechanical oscillator
    • 频率和/或相位补偿微机电振荡器
    • US06995622B2
    • 2006-02-07
    • US10754985
    • 2004-01-09
    • Aaron PartridgeMarkus Lutz
    • Aaron PartridgeMarkus Lutz
    • H03B5/04H03B5/30H03L7/06
    • H03L1/022H03B5/04H03B5/30H03L1/026H03L1/027H03L1/04H03L7/07H03L7/08H03L7/0812H03L7/1974
    • There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a compensated microelectromechanical oscillator, having a microelectromechanical resonator that generates an output signal and frequency adjustment circuitry, coupled to the microelectromechanical resonator to receive the output signal of the microelectromechanical resonator and, in response to a set of values, to generate an output signal having second frequency. In one embodiment, the values may be determined using the frequency of the output signal of the microelectromechanical resonator, which depends on the operating temperature of the microelectromechanical resonator and/or manufacturing variations of the microelectromechanical resonator. In one embodiment, the frequency adjustment circuitry may include frequency multiplier circuitry, for example, PLLs, DLLs, digital/frequency synthesizers and/or FLLs, as well as any combinations and permutations thereof. The frequency adjustment circuitry, in addition or in lieu thereof, may include frequency divider circuitry, for example, DLLS, digital/frequency synthesizers (for example, DDS) and/or FLLs, as well as any combinations and permutations thereof.
    • 这里描述和说明了许多发明。 在一个方面,本发明涉及一种补偿的微机电振荡器,其具有产生输出信号和频率调节电路的微机电谐振器,耦合到微机电谐振器以接收微机电谐振器的输出信号,并响应于一组 以产生具有第二频率的输出信号。 在一个实施例中,可以使用取决于微机电谐振器的操作温度和/或微机电谐振器的制造变化的微机电谐振器的输出信号的频率来确定值。 在一个实施例中,频率调整电路可以包括倍频器电路,例如PLL,DLL,数字/频率合成器和/或FLL,以及它们的任何组合和排列。 频率调节电路,除了或代替它,可以包括分频器电路,例如DLLS,数字/频率合成器(例如,DDS)和/或FLL,以及它们的任何组合和排列。
    • 29. 发明授权
    • Method for release of surface micromachined structures in an epitaxial reactor
    • 在外延反应器中释放表面微加工结构的方法
    • US06939809B2
    • 2005-09-06
    • US10334186
    • 2002-12-30
    • Aaron PartridgeMarkus Lutz
    • Aaron PartridgeMarkus Lutz
    • B81B3/00B81C1/00H01L21/302C23F1/00G01F3/00H01L21/46
    • B81C1/00476
    • A method for releasing from underlying substrate material micromachined structures or devices without application of chemically aggressive substances or excessive forces. The method starts with the step of providing a partially formed device, comprising a substrate layer, a sacrificial layer deposited on the substrate, and a function layer deposited on the sacrificial layer and possibly exposed portions of the substrate layer and then etched to define micromechanical structures or devices therein. The etching process exposes the sacrificial layer underlying the removed function layer material. Next there are the steps of cleaning residues from the surface of the device, and then directing high-temperature hydrogen gas over the exposed surfaces of the sacrificial layer to convert the silicon dioxide to a gas, which is carried away from the device by the hydrogen gas. The release process is complete when all of the silicon dioxide sacrificial layer material underlying the micromachined structures or devices is removed.
    • 用于从基底材料释放微加工结构或器件而不施加化学腐蚀性物质或过度的力的方法。 该方法从提供部分形成的器件的步骤开始,该器件包括衬底层,沉积在衬底上的牺牲层和沉积在牺牲层上的功能层以及可能的衬底层的暴露部分,然后蚀刻以限定微机械结构 或其中的装置。 蚀刻工艺暴露了去除的功能层材料下面的牺牲层。 接下来,将从器件表面清除残留物,然后将高温氢气引导到牺牲层的暴露表面上,以将二氧化硅转化为气体,从气体中脱离器件 加油站。 当除去微加工结构或器件下面的所有二氧化硅牺牲层材料时,释放过程完成。