会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 22. 发明授权
    • Apparatus and accompanying methods for visualizing clusters of data and hierarchical cluster classifications
    • 用于可视化数据集群和分级集群分类的装置和相关方法
    • US06742003B2
    • 2004-05-25
    • US09845151
    • 2001-04-30
    • David E. HeckermanPaul S. BradleyDavid M. ChickeringChristopher A. Meek
    • David E. HeckermanPaul S. BradleyDavid M. ChickeringChristopher A. Meek
    • G06F1730
    • G06Q30/0641G06F17/30713Y10S707/99934Y10S707/99935Y10S707/99936Y10S707/99942Y10S707/99944Y10S707/99945Y10S707/99948
    • A system that incorporates an interactive graphical user interface for visualizing clusters (categories) and segments (summarized clusters) of data. Specifically, the system automatically categorizes incoming case data into clusters, summarizes those clusters into segments, determines similarity measures for the segments, scores the selected segments through the similarity measures, and then forms and visually depicts hierarchical organizations of those selected clusters. The system also automatically and dynamically reduces, as necessary, a depth of the hierarchical organization, through elimination of unnecessary hierarchical levels and inter-nodal links, based on similarity measures of segments or segment groups. Attribute/value data that tends to meaningfully characterize each segment is also scored, rank ordered based on normalized scores, and then graphically displayed. The system permits a user to browse through the hierarchy, and, to readily comprehend segment inter-relationships, selectively expand and contract the displayed hierarchy, as desired, as well as to compare two selected segments or segment groups together and graphically display the results of that comparison. An alternative discriminant-based cluster scoring technique is also presented.
    • 一个包含交互式图形用户界面的系统,用于可视化数据的集群(类别)和分段(聚合集群)。 具体来说,系统将传入的病例数据自动分类为群集,将这些群集合成段,确定段的相似性度量,通过相似性度量对所选段进行分类,然后形成并可视地描绘这些群集的层次结构。 基于片段或段组的相似性度量,系统还可以根据需要自动和动态地减少层次组织的深度,通过消除不必要的层级和节点间链接。 倾向于对每个段进行有意义表征的属性/值数据也被划分,基于归一化分数进行排序,然后以图形方式显示。 该系统允许用户浏览层次结构,并且为了容易地理解分段相互关系,根据需要选择性地扩展和收缩所显示的层次结构,以及将两个选定的分段或分段组进行比较,并以图形方式显示 那个比较。 还提出了一种替代的基于判别式的聚类评分技术。
    • 23. 发明授权
    • Systems and methods that utilize machine learning algorithms to facilitate assembly of aids vaccine cocktails
    • 利用机器学习算法方便装配疫苗鸡尾酒的系统和方法
    • US08478535B2
    • 2013-07-02
    • US11324506
    • 2005-12-30
    • Nebojsa JojicVladimir JojicDavid E. HeckermanBrendan John FreyChristopher A. Meek
    • Nebojsa JojicVladimir JojicDavid E. HeckermanBrendan John FreyChristopher A. Meek
    • G01N33/50
    • G06F19/22G06F19/14G06F19/18G06F19/24G06G7/48G06G7/58
    • The subject invention provides systems and methods that facilitate AIDS vaccine cocktail assembly via machine learning algorithms such as a cost function, a greedy algorithm, an expectation-maximization (EM) algorithm, etc. Such assembly can be utilized to generate vaccine cocktails for species of pathogens that evolve quickly under immune pressure of the host. For example, the systems and methods of the subject invention can be utilized to facilitate design of T cell vaccines for pathogens such HIV. In addition, the systems and methods of the subject invention can be utilized in connection with other applications, such as, for example, sequence alignment, motif discovery, classification, and recombination hot spot detection. The novel techniques described herein can provide for improvements over traditional approaches to designing vaccines by constructing vaccine cocktails with higher epitope coverage, for example, in comparison with cocktails of consensi, tree nodes and random strains from data.
    • 本发明提供了通过诸如成本函数,贪心算法,期望最大化(EM)算法等机器学习算法来促进艾滋病疫苗鸡尾酒组合的系统和方法。可以利用这种装配来产生疫苗鸡尾酒, 在宿主免疫压力下快速发展的病原体。 例如,本发明的系统和方法可以用于促进用于诸如HIV的病原体的T细胞疫苗的设计。 此外,本发明的系统和方法可以与其他应用相结合使用,例如序列比对,基序发现,分类和重组热点检测。 本文所述的新颖技术可以提供改进,以通过构建具有较高表位覆盖度的疫苗混合物来设计疫苗的传统方法,例如与来自数据的共同体,树节点和随机菌株的鸡尾酒相比。
    • 26. 发明授权
    • Staged mixture modeling
    • 分阶段混合建模
    • US07133811B2
    • 2006-11-07
    • US10270914
    • 2002-10-15
    • Bo ThiessonChristopher A. MeekDavid E. Heckerman
    • Bo ThiessonChristopher A. MeekDavid E. Heckerman
    • G06F17/10
    • G06K9/6226G06F17/18Y10S707/99935Y10S707/99936Y10S707/99942
    • A system and method for generating staged mixture model(s) is provided. The staged mixture model includes a plurality of mixture components each having an associated mixture weight, and, an added mixture component having an initial structure, parameters and associated mixture weight. The added mixture component is modified based, at least in part, upon a case that is undesirably addressed by the plurality of mixture components using a structural expectation maximization (SEM) algorithm to modify at the structure, parameters and/or associated mixture weight of the added mixture component.The staged mixture model employs a data-driven staged mixture modeling technique, for example, for building density, regression, and classification model(s). The basic approach is to add mixture component(s) (e.g., sequentially) to the staged mixture model using an SEM algorithm.
    • 提供了一种用于生成分段混合模型的系统和方法。 分级混合物模型包括各自具有相关混合物重量的多种混合物组分,以及具有初始结构,参数和相关混合物重量的添加的混合物组分。 至少部分地,添加的混合物组分基于使用结构期望最大化(SEM)算法不期望地由多个混合物组分解决的情况进行修饰,以在结构,参数和/或相关联的混合物重量 加入的混合物组分。 分级混合模型采用数据驱动的分段混合建模技术,例如建筑密度,回归和分类模型。 基本方法是使用SEM算法将混合物组分(例如,顺序地)添加到分级混合物模型中。