会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 16. 发明授权
    • Error correction unit and object temperature detection device
    • US11320315B1
    • 2022-05-03
    • US17154564
    • 2021-01-21
    • EMTAKE INC.
    • Yongho Cho
    • H04N5/33G01J5/10H04N17/00G01J5/00G01J5/80
    • Disclosed is an error correction unit enabling constant accurate measurement of a moving object by correcting an error attributable to a change in sensitivity of a thermal image sensor, a change in distance between a thermal image sensor and an object, or an ambient environment. Further disclosed is an object temperature detection device equipped with the same. The error correction unit includes a first arm member rotatably coupled to a thermal imaging camera unit, a heating element holder rotatably coupled to the first arm member, the heating element fixed to the heating element holder, and a temperature sensor configured to measure a temperature of the heating element. The heating element is positioned within an angle of view of the thermal imaging camera unit through rotational motion of the first arm member and the heating element holder. The temperature sensor measures the temperature of the heating element at a first time and a second time different from the first time so that the controller can use a temperature change value of the heating element. Data of the temperatures of the heating element, which are measured respectively at the first time and the second time, are transmitted to the controller.
    • 18. 发明公开
    • Methods and Apparatus for Direct Calibration
    • US20240369717A1
    • 2024-11-07
    • US18753904
    • 2024-06-25
    • Woods Hole Oceanographic Institution
    • Paul Dominic FUCILE
    • G01S19/23G01J5/08G01J5/80G01S17/50G01S19/26
    • G01S19/235G01J5/80G01S17/50G01S19/26G01J5/0878
    • A device and method of use for the calibration of a detector. The calibration device includes a first source configured to produce first electromagnetic energy EMR. A first diffuser is connected to the first source and is configured to accept the first EMR and provide a first diffused portion of the first EMR. An integrating sphere defines an interior and is optically connected to the first diffuser, and is configured to accept the first diffused portion from the first diffuser into the interior. An exit port connected to the integrating sphere is configured to pass at least a portion of electromagnetic energy. A thermal mechanism is configured to adjust and maintain the temperature of at least the first source. The integrating sphere is configured to pass only a second portion of the first diffused portion of the first EMR from the first diffuser to the exit port. In another embodiment, the calibration device has an arm, an actuator, and a module. The module supports at least a first source that emits electromagnetic energy, a thermal mechanism, and a controller. The actuator is configured to move the arm and module to a calibration position enabling the first source to be within the line of sight of an external detector, while the controller is configured to control the thermal mechanism enabling precise temperature regulation of the source and therefore the regulation of the emitted electromagnetic energy. When the device is not in the calibration position, the actuator is configured to move the arm and module to a stowed position, protecting the device from ambient electromagnetic radiation and harm.
    • 19. 发明公开
    • Methods and Apparatus for Direct Calibration
    • US20240369716A1
    • 2024-11-07
    • US18753768
    • 2024-06-25
    • Woods Hole Oceanographic Institution
    • Paul Dominic FUCILE
    • G01S19/23G01J5/08G01J5/80G01S17/50G01S19/26
    • G01S19/235G01J5/80G01S17/50G01S19/26G01J5/0878
    • A device and method of use for the calibration of a detector. The calibration device includes a first source configured to produce first electromagnetic energy EMR. A first diffuser is connected to the first source and is configured to accept the first EMR and provide a first diffused portion of the first EMR. An integrating sphere defines an interior and is optically connected to the first diffuser, and is configured to accept the first diffused portion from the first diffuser into the interior. An exit port connected to the integrating sphere is configured to pass at least a portion of electromagnetic energy. A thermal mechanism is configured to adjust and maintain the temperature of at least the first source. The integrating sphere is configured to pass only a second portion of the first diffused portion of the first EMR from the first diffuser to the exit port. In another embodiment, the calibration device has an arm, an actuator, and a module. The module supports at least a first source that emits electromagnetic energy, a thermal mechanism, and a controller. The actuator is configured to move the arm and module to a calibration position enabling the first source to be within the line of sight of an external detector, while the controller is configured to control the thermal mechanism enabling precise temperature regulation of the source and therefore the regulation of the emitted electromagnetic energy. When the device is not in the calibration position, the actuator is configured to move the arm and module to a stowed position, protecting the device from ambient electromagnetic radiation and harm.