会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 15. 发明授权
    • Robot control method, robot control device, and robot control system
    • 机器人控制方法,机器人控制装置和机器人控制系统
    • US09002519B2
    • 2015-04-07
    • US13795967
    • 2013-03-12
    • JTEKT Corporation
    • Hiromichi OhtaYasuharu MukaiKazuya Numazaki
    • G05B19/00B25J9/16
    • B25J9/1628B25J9/1633B25J9/1638B25J9/1641B25J9/1643G05B2219/40367G05B2219/40461Y10S901/09
    • A CPU of a robot control device calculates load torque based on the inertia force, centrifugal force or Coriolis force, gravity force, friction torque, and actuator inertia torque applied to a joint axis of each link, each time an orientation parameter indicative of the link position and orientation allowed by a redundant degree of freedom is sequentially changed, under a constraint of end-effector position and orientation as target values. The CPU obtains the link position and orientation at which the ratio of the load torque to the rated torque of a rotary actuator provided for each joint is minimized, while the orientation parameter is being changed, and provides a feed-forward value that gives rise to each load torque obtained when the ratio of the load torque to the rated torque of the rotary actuator is minimized, to a control command generated to the rotary actuator of each joint axis for achieving the end-effector position and orientation as target values.
    • 机器人控制装置的CPU基于施加到每个链节的关节轴的惯性力,离心力或科里奥利力,重力,摩擦力矩和致动器惯性转矩来计算负载转矩,每次指示链接的取向参数 在作为目标值的末端执行器位置和方向的约束下,顺序地改变由冗余自由度允许的位置和取向。 在取向参数改变的同时,CPU获得链接位置和方向,在该位置和方向上,为每个接头设置的旋转致动器的负载转矩与额定转矩的比例最小化,并且提供一个前馈值, 当将负载转矩与旋转致动器的额定转矩的比率最小化时获得的每个负载转矩相对于为了实现末端执行器位置和方位而成为每个关节轴的旋转致动器的控制指令作为目标值。
    • 17. 发明申请
    • ROBOT CONTROL DEVICE
    • 机器人控制装置
    • US20150039128A1
    • 2015-02-05
    • US14448292
    • 2014-07-31
    • KABUSHIKI KAISHA TOSHIBA
    • Junji OAKI
    • B25J9/16
    • B25J9/1651B25J9/1638B25J9/1641B25J9/1653G05B2219/41392G05B2219/41398
    • A robot control device according to an embodiment includes: an observer receiving the angular velocity of the motor and the current command value, and estimating an angular acceleration of the link, and angular velocities of the link and the motor from a simulation model of an angular velocity control system of the motor; a first feedback unit calculating an axis torsion angular velocity from a difference between the angular velocities of the link and the motor estimated by the observer, and giving feedback to the angular velocity control system; a second feedback unit feeding back the angular acceleration of the link estimated by the observer to the angular velocity control system; and a first feedback constant calculating unit compensating an end effector load mass and increases inertia at the second feedback unit when an end effector load in the nonlinear dynamic model has low inertia.
    • 根据实施例的机器人控制装置包括:观察者接收电动机的角速度和当前指令值,并且从角度的模拟模型估计链路的角加速度和链路和电动机的角速度 电机速度控制系统; 第一反馈单元,从所述链路的角速度与由所述观测者估计的所述电动机之间的差计算轴扭转角速度,并向所述角速度控制系统提供反馈; 第二反馈单元将由观察者估计的链路的角加速度反馈到角速度控制系统; 以及当非线性动力学模型中的末端执行器负载具有低惯性时,第一反馈常数计算单元补偿末端执行器负载质量并增加第二反馈单元处的惯性。