会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 12. 发明授权
    • Trilayer resist scheme for gate etching applications
    • 栅极蚀刻应用的三层抗蚀剂方案
    • US07435671B2
    • 2008-10-14
    • US11506227
    • 2006-08-18
    • Nicholas C. FullerTimothy J. DaltonYing Zhang
    • Nicholas C. FullerTimothy J. DaltonYing Zhang
    • H01L21/3205
    • H01L21/32139H01L21/0332H01L21/28123
    • A trilayer resist (TLR) patterning scheme is provided to enable gate conductors, particularly polySi gate conductors, with critical dimensions (CDs) of less than 40 nm and minimal LER and LWR. In accordance with the present invention, the inventive patterning scheme utilizes an organic/inorganic/organic multilayer stack instead of an organic layer used in the prior art. The top organic layer of the inventive TLR is a photoresist material such as a 193 nm photoresist that is located atop an antireflective coating (ARC), which is also comprised of an organic material. The middle inorganic layer of the TLR comprises any oxide layer such as, for example, a low temperature (less than or equal to 250° C.) chemical vapor deposited (CVD) oxide, an oxide derived from TEOS (tetraethylorthosilicate), silicon oxide, a silane oxide, or a Si-containing ARC material. The bottom organic layer of the TLR comprises any organic layer such as, for example, a Near Frictionless Carbon (NFC), a diamond-like carbon, a thermosetting polyarylene ether.
    • 提供三层抗蚀剂(TLR)图案化方案,以使栅极导体,特别是多晶硅栅极导体,临界尺寸(CD)小于40nm,最小LER和LWR。 根据本发明,本发明的图案化方案利用有机/无机/有机多层堆叠代替现有技术中使用的有机层。 本发明TLR的顶部有机层是诸如193nm光致抗蚀剂的光致抗蚀剂材料,其位于抗反射涂层(ARC)的顶部,抗反射涂层也由有机材料构成。 TLR的中间无机层包括任何氧化物层,例如化学气相沉积(CVD)的低温(小于或等于250℃),源自TEOS(原硅酸四乙酯),氧化硅 ,硅烷氧化物或含Si的ARC材料。 TLR的底部有机层包括任何有机层,例如近无摩擦碳(NFC),类金刚石碳,热固性聚亚芳基醚。
    • 19. 发明授权
    • De-fluorination of wafer surface and related structure
    • 晶圆表面脱氟及相关结构
    • US07049209B1
    • 2006-05-23
    • US10907463
    • 2005-04-01
    • Timothy J. DaltonNicholas C. M. FullerKaushik A. KumarCatherine Labelle
    • Timothy J. DaltonNicholas C. M. FullerKaushik A. KumarCatherine Labelle
    • H01L21/322
    • H01L21/31138H01L21/02063H01L21/3105H01L21/76814
    • Methods of de-fluorinating a wafer surface after damascene processing and prior to photoresist removal are disclosed, as is a related structure. In one embodiment, the method places the wafer surface in a chamber and exposes the wafer surface to a plasma from a source gas including at least one of nitrogen (N2) and/or hydrogen (H2) at a low power density or ion density. The exposing step removes the chemisorbed and physisorbed fluorine residue present on the wafer surface (and chamber), and improves ultra low dielectric (ULK) interconnect structure robustness and integrity. The exposing step is operative due to the efficacy of hydrogen and nitrogen radicals at removing fluorine-based species and also due to the presence of a minimal amount of ion energy in the plasma. The low power density nitrogen and/or hydrogen-containing plasma process enables negligible ash/adhesion promoter interaction and reduces integration complexity during dual damascene processing of low-k OSG-based materials.
    • 公开了在镶嵌处理之后和光致抗蚀剂去除之前脱晶晶片表面的方法,如相关结构。 在一个实施例中,该方法将晶片表面放置在室中并将晶片表面暴露于来自包括氮(N 2 H 2)和/或氢(H 2 )。 曝光步骤去除晶片表面(和室)上存在的化学吸附和物理吸附的氟残基,并改善超低介电(ULK)互连结构的鲁棒性和完整性。 曝光步骤由于氢和氮自由基在除去氟基物质的作用以及由于在等离子体中存在最少量的离子能量而有效。 低功率密度氮和/或含氢等离子体方法使得可以忽略灰分/粘附促进剂相互作用,并降低在低k OSG基材料的双镶嵌加工过程中的集成复杂性。
    • 20. 发明授权
    • Protective hardmask for producing interconnect structures
    • 用于生产互连结构的保护硬掩模
    • US06720249B1
    • 2004-04-13
    • US09550943
    • 2000-04-17
    • Timothy J. DaltonChristopher V. JahnesJoyce C. LiuSampath Purushothaman
    • Timothy J. DaltonChristopher V. JahnesJoyce C. LiuSampath Purushothaman
    • H01L214763
    • H01L21/76835H01L21/76802H01L21/76811H01L21/76813H01L21/76816H01L21/76829H01L23/5222H01L23/5329H01L2924/0002H01L2924/00
    • The present invention provides a permanent protective hardmask which protects the dielectric properties of a main dielectric layer having a desirably low dielectric constant in a semiconductor device from undesirable increases in the dielectric constant, undesirable increases in current leakage, and low device yield from surface scratching during subsequent processing steps. The protective hardmask further includes a single layer or dual layer sacrificial hardmask particularly useful when interconnect structures such as via openings and/or lines are formed in the low dielectric material during the course of making the final product. The sacrificial hardmask layers and the permanent hardmask layer may be formed in a single step from a same precursor wherein process conditions are altered to provide films of differing dielectric constants. Most preferably, a dual damascene structure has a tri-layer hardmask comprising silicon carbide BLoK™, PECVD silicon nitride, and PECVD silicon dioxide, respectively, formed over a bulk low dielectric constant interlevel dielectric prior to forming the interconnect structures in the interlevel dielectric.
    • 本发明提供一种永久性保护性硬掩模,其保护半导体器件中具有期望的低介电常数的主电介质层的介电性能,不需要介电常数的增加,不期望的电流泄漏增加,以及在表面划伤期间的低的器件产量 后续处理步骤。 保护性硬掩模还包括单层或双层牺牲硬掩模,在制造最终产品的过程中,在低电介质材料中形成诸如通孔开口和/或线之间的互连结构时尤其有用。 牺牲硬掩模层和永久硬掩模层可以从相同的前体在单个步骤中形成,其中改变工艺条件以提供不同介电常数的膜。 最优选地,双镶嵌结构具有三层硬掩模,其在形成层间的互连结构之前分别形成在体低介电常数层间电介质上的碳化硅BLoK TM,PECVD氮化硅和PECVD二氧化硅 电介质。