会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明授权
    • Momentum-based balance controller for humanoid robots on non-level and non-stationary ground
    • 基于动量的平衡控制器,用于非水平和非静止地面的人形机器人
    • US09367795B2
    • 2016-06-14
    • US13580477
    • 2011-02-24
    • Sung-Hee LeeAmbarish Goswami
    • Sung-Hee LeeAmbarish Goswami
    • G05B15/00G06N3/00B62D57/032
    • G06N3/008B62D57/032
    • A momentum-based balance controller controls a humanoid robot to maintain balance. The balance controller derives desired rates of change of linear and angular momentum from desired motion of the robot. The balance controller then determines desired center of pressure (CoP) and desired ground reaction force (GRF) to achieve the desired rates of change of linear and angular momentum. The balance controller determines admissible CoP, GRF, and rates of change of linear and angular momentum that are optimally close to the desired value while still allowing the robot to maintain balance. The balance controller controls the robot to maintain balance based on a human motion model such that the robot's motions are human-like. Beneficially, the robot can maintain balance even when subjected to external perturbations, or when it encounters non-level and/or non-stationary ground.
    • 基于动量的平衡控制器控制人形机器人以保持平衡。 平衡控制器从机器人的期望运动中获得线性和角动量的所需变化率。 然后平衡控制器确定所需的压力中心(CoP)和所需的地面反作用力(GRF),以实现所需的线性和角动量变化率。 平衡控制器确定线性和角动量的允许CoP,GRF和最佳接近期望值的变化率,同时仍允许机器人保持平衡。 平衡控制器控制机器人基于人体运动模型保持平衡,使得机器人的运动是类似人体的。 有利地,机器人即使在受到外部扰动时也可以保持平衡,或者当遇到非水平和/或非静止地面时,机器人可以保持平衡。
    • 12. 发明授权
    • Machine learning approach for predicting humanoid robot fall
    • 机器人学习方法预测人形机器人下降
    • US08554370B2
    • 2013-10-08
    • US12696783
    • 2010-01-29
    • Ambarish GoswamiShivaram Kalyanakrishnan
    • Ambarish GoswamiShivaram Kalyanakrishnan
    • G05B19/04G06F15/18G06N3/02G06N3/08
    • B25J9/163B62D57/032G06N3/008
    • A system and method is disclosed for predicting a fall of a robot having at least two legs. A learned representation, such as a decision list, generated by a supervised learning algorithm is received. This learned representation may have been generated based on trajectories of a simulated robot when various forces are applied to the simulated robot. The learned representation takes as inputs a plurality of features of the robot and outputs a classification indicating whether the current state of the robot is balanced or falling. A plurality of features of the current state of the robot, such as the height of the center of mass of the robot, are determined based on current values of a joint angle or joint velocity of the robot. The current state of the robot is classified as being either balanced or falling by evaluating the learned representation with the plurality of features of the current state of the robot.
    • 公开了一种用于预测具有至少两条腿的机器人的坠落的系统和方法。 接收由受监督的学习算法产生的诸如决策列表的学习表示。 当将各种力施加到模拟机器人时,可以基于模拟机器人的轨迹产生该学习的表示。 所学习的表示将机器人的多个特征作为输入,并输出表示机器人的当前状态是平衡还是下降的分类。 基于机器人的关节角度或关节速度的当前值来确定机器人的当前状态的多个特征,例如机器人的质心的高度。 通过利用机器人的当前状态的多个特征来评估所学习的表示,将机器人的当前状态分类为平衡或下降。
    • 13. 发明申请
    • Reverse Drive Assist for Long Wheelbase Dual Axle Trailers
    • 用于长轴距双轴拖车的反向驱动辅助
    • US20130179038A1
    • 2013-07-11
    • US13734764
    • 2013-01-04
    • Ambarish GoswamiJimmy Chiu
    • Ambarish GoswamiJimmy Chiu
    • B62D13/06B62D13/00
    • B62D13/06B62D5/04B62D13/005B62D13/025
    • A controller and control method assists a driver with backing up of a vehicle with an attached trailer. The vehicle has a front axle with steerable front wheels controlled by the driver and a rear axle with non-steerable rear wheels. The trailer has a front axle with non-steerable front wheels and a rear axle with steerable rear wheels controlled by a trailer steering controller. The controller receives an operator-controlled vehicle steering angle and a measured hitch angle. The controller determines a trailer steering angle based on the operator-controller vehicle steering angle and the measured hitch angle. The controller continuously controls the trailer (e.g., via a steering angle of the rear wheels) to maintain a trajectory with substantially no lateral slippage.
    • 控制器和控制方法协助驾驶员使用附带的拖车备份车辆。 该车辆具有前轮,其具有由驾驶员控制的可转向前轮和具有不可操纵后轮的后桥。 拖车具有前轮,其具有不可操纵的前轮和后轮,其具有由拖车转向控制器控制的可转向后轮。 控制器接收操作员控制的车辆转向角和测量的牵引角。 控制器基于操作者控制器车辆转向角度和测量的牵引角确定拖车转向角度。 控制器连续地控制拖车(例如经由后轮的转向角度)来维持基本上没有横向滑动的轨迹。
    • 14. 发明申请
    • Momentum-Based Balance Controller For Humanoid Robots On Non-Level And Non-Stationary Ground
    • 基于动量的平衡控制器,用于非水平和非固定地面上的人型机器人
    • US20120316684A1
    • 2012-12-13
    • US13580477
    • 2011-02-24
    • Sung-Hee LeeAmbarish Goswami
    • Sung-Hee LeeAmbarish Goswami
    • G06F19/00
    • G06N3/008B62D57/032
    • A momentum-based balance controller controls a humanoid robot to maintain balance. The balance controller derives desired rates of change of linear and angular momentum from desired motion of the robot. The balance controller then determines desired center of pressure (CoP) and desired ground reaction force (GRF) to achieve the desired rates of change of linear and angular momentum. The balance controller determines admissible CoP, GRF, and rates of change of linear and angular momentum that are optimally close to the desired value while still allowing the robot to maintain balance. The balance controller controls the robot to maintain balance based on a human motion model such that the robot's motions are human-like. Beneficially, the robot can maintain balance even when subjected to external perturbations, or when it encounters non-level and/or non-stationary ground.
    • 基于动量的平衡控制器控制人形机器人以保持平衡。 平衡控制器从机器人的期望运动中获得线性和角动量的所需变化率。 然后平衡控制器确定所需的压力中心(CoP)和所需的地面反作用力(GRF),以实现所需的线性和角动量变化率。 平衡控制器确定线性和角动量的允许CoP,GRF和最佳接近期望值的变化率,同时仍允许机器人保持平衡。 平衡控制器控制机器人基于人体运动模型保持平衡,使得机器人的运动是类似人体的。 有利地,机器人即使在受到外部扰动时也可以保持平衡,或者当遇到非水平和/或非静止地面时,机器人可以保持平衡。
    • 15. 发明授权
    • Intelligent stepping for humanoid fall direction change
    • 智能步进为人形方向下降方向改变
    • US08332068B2
    • 2012-12-11
    • US12610865
    • 2009-11-02
    • Ambarish GoswamiSeung-kook YunYoshiaki Sakagami
    • Ambarish GoswamiSeung-kook YunYoshiaki Sakagami
    • G06F19/00
    • B62D57/032
    • A system and method is disclosed for controlling a robot having at least two legs that is falling down from an upright posture. An allowable stepping zone where the robot is able to step while falling is determined. The allowable stepping zone may be determined based on leg Jacobians of the robot and maximum joint velocities of the robot. A stepping location within the allowable stepping zone for avoiding an object is determined. The determined stepping location maximizes an avoidance angle comprising an angle formed by the object to be avoided, a center of pressure of the robot upon stepping to the stepping location, and a reference point of the robot upon stepping to the stepping location. The reference point, which may be a capture point of the robot, indicates the direction of fall of the robot. The robot is controlled to take a step toward the stepping location.
    • 公开了一种用于控制具有从直立姿势落下的至少两条腿的机器人的系统和方法。 确定机器人能够在跌落时踏步的允许步进区域。 可以根据机器人的腿部Jacobians和机器人的最大联合速度来确定允许的步进区域。 确定允许的步进区域内用于避免物体的步进位置。 所确定的步进位置最大化包括由待避免的物体形成的角度,步进到步进位置时机器人的压力中心和步进到步进位置时的机器人的参考点的回避角度。 可以是机器人的捕获点的参考点表示机器人的下落方向。 控制机器人向步进位置迈出一步。
    • 16. 发明申请
    • Learning Capture Points for Humanoid Push Recovery
    • 学习人型推动恢复的获取点
    • US20090132087A1
    • 2009-05-21
    • US12274263
    • 2008-11-19
    • Jerry PrattAmbarish GoswamiJohn RebulaFabian Canas
    • Jerry PrattAmbarish GoswamiJohn RebulaFabian Canas
    • G06F17/00
    • B62D57/032
    • A system and method is disclosed for controlling a robot having at least two legs, the robot subjected to an event such as a push that requires the robot to take a step to prevent a fall. In one embodiment, a current capture point is determined, where the current capture point indicates a location on a ground surface that is the current best estimate of a stepping location for avoiding a fall and for reaching a stopped state. The robot is controlled to take a step toward the current capture point. After taking the step, if the robot fails to reach a stopped state without taking any additional steps, an updated current capture point is determined based on the state of the robot after taking the step. The current capture points can be stored in a capture point memory and initialized based on a model of the robot.
    • 公开了一种用于控制具有至少两条腿的机器人的系统和方法,所述机器人经受诸如推动的事件,其需要机器人采取步骤以防止坠落。 在一个实施例中,确定当前捕获点,其中当前捕获点指示地面上的位置,其是用于避免跌倒并达到停止状态的步进位置的当前最佳估计。 控制机器人向目前的捕获点迈出一步。 在步骤之后,如果机器人在不采取任何附加步骤的情况下不能达到停止状态,则基于在步骤之后的机器人的状态来确定更新的当前捕获点。 当前捕获点可以存储在捕获点存储器中,并基于机器人的模型进行初始化。
    • 18. 发明申请
    • Characterization and Classification of Pose in Low Dimension
    • 低维姿态的表征与分类
    • US20070265732A1
    • 2007-11-15
    • US11746540
    • 2007-05-09
    • Ambarish Goswami
    • Ambarish Goswami
    • G05B19/00
    • G06K9/00369
    • A BodyMap matrix for a pose includes elements representing Euclidean distances between markers on the object. The BodyMap matrix can be normalized and visualized using a grayscale or mesh image, enabling a user to easily interpret the pose. The pose is characterized in a low-dimensional space by determining the singular values of the BodyMap matrix for the pose and using a small set of dominant singular values to characterize and visually represent the pose. A candidate pose is classified in a low-dimensional space by comparing the characterization of the candidate pose to characterizations of known poses and determining which known pose is most similar to the candidate pose. Determining the similarity of the candidate pose to the known poses is accomplished through distance calculations, including the calculation of Mahalanobis distances from the characterization of the candidate pose to characterizations of known poses and their noisy variations.
    • 用于姿势的BodyMap矩阵包括表示对象上的标记之间的欧几里德距离的元素。 BodyMap矩阵可以使用灰度或网格图像进行归一化和可视化,使用户能够轻松地解读姿势。 姿势的特征在于通过确定用于姿势的BodyMap矩阵的奇异值并使用一组主要奇异值来表征和可视地表示姿态,从而在低维空间中被表征。 通过将候选姿势的表征与已知姿势的特征进行比较并确定哪个已知姿势与候选姿势最相似来将候选姿势分类到低维空间中。 通过距离计算确定候选姿势与已知姿势的相似度,包括从候选姿势的表征到已知姿势的特征以及其噪声变化的马氏距离的计算。