会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 181. 发明授权
    • Seeding parenchymal cells into compression resistant porous scaffold after vascularizing in vivo
    • 在体内血管化后将实质细胞接种到抗压多孔支架中
    • US06309635B1
    • 2001-10-30
    • US08345217
    • 1994-11-28
    • Donald E. IngberRobert S. LangerJoseph P. Vacanti
    • Donald E. IngberRobert S. LangerJoseph P. Vacanti
    • A01N6300
    • A61L27/3804A61F2/022A61F2/062A61L27/3839A61L2430/06C12N5/0068C12N5/0671C12N2501/18C12N2533/30C12N2533/40
    • A method is provided whereby cells having a desired function are seeded on and into biocompatible, biodegradable or non-degradable porous polymer scaffolding matrix, previously implanted in a patient and infiltrated with blood vessels and connective tissue, to produce a functional organ equivalent. The resulting organoid is a chimera formed of parenchymal elements of the donated tissue and vascular and matrix elements of the host. The matrix should be compression resistant and a non-toxic, porous template for vascular ingrowth. The pore size, usually between approximately 100 and 300 microns, should allow vascular and connective tissue ingrowth throughout approximately 10 to 90% of the matrix, and the injection of cells such as hepatocytes without damage to the cells or patient. The introduced cells attach to the connective tissue and are fed by the blood vessels. Immediately prior to matrix implantation portacaval shunts can be created to provide trophic stimulatory factors to the implanted matrix to enhance replication and function.
    • 提供了一种方法,其中具有期望功能的细胞接种在生物相容性,可生物降解或不可降解的多孔聚合物支架基质上,先前植入患者并渗入血管和结缔组织,以产生功能性器官当量。 所得的有机体是由捐赠的组织的实质元素和宿主的血管和基质元素形成的嵌合体。 基质应具有抗压缩性和无毒,多孔的模板用于血管向内生长。 通常在约100和300微米之间的孔径应允许血管和结缔组织在基质的约10至90%内向内生长,并且注射细胞如肝细胞而不损伤细胞或患者。 引入的细胞附着于结缔组织并由血管进食。 在矩阵植入之前,可以产生口腔分流,以向植入的基质提供营养刺激因子以增强复制和功能。
    • 182. 发明授权
    • Method for regulating size of vascularized normal tissue
    • 调节血管化正常组织大小的方法
    • US06306819B1
    • 2001-10-23
    • US09183556
    • 1998-10-30
    • Maria RupnickRobert S. LangerJudah Folkman
    • Maria RupnickRobert S. LangerJudah Folkman
    • A61K3800
    • A61K38/484A61K31/00A61K31/336A61K31/454A61K38/39
    • Angiogenesis inhibitors are administered to patients in an amount effective to regulate normal, non-transformed vascularized tissue size and/or growth by regulating its vascular compartment. Examples of tissues that can be controlled include adipose tissue, intestinal polyps, muscle (including cardiac) tissue, and endometrial tissue. The response of these tissues to the angiogenesis inhibitors is dose-dependent, reversible, and common to a variety of different angiogenesis inhibitors (examples use TNP-470, angiostatin, and endostatin), based on studies in animal models of obesity, intestinal polyps, cardiac hypertrophy, and endometriosis. Initial studies conducted in an adipose tissue model (genetically obese mice and normal control mice) showed that the growth and mass of adipose tissue is under the control of microvascular endothelium. Expansion of adipose tissue was associated with endothelial cell proliferation. Inhibition of angiogenesis led to reduction in adipose tissue mass. Weight gain in animals receiving angiogenesis inhibitors was significantly restricted, in spite of increases in appetite sufficient to cause weight gain in paired-fed mice. Discontinuation of the inhibitor resulted in rapid expasion of the adipose tissue. The effect was dose-dependent, repeatedly reversible, and occurred in response to all of the inhibitors tested. Significant inhibition was also observed in both the intestinal polyp and cardiac hypertrophy animal models, using dosages of two-thirds or less than the dosages used to treat tumors. Preliminary results in an endometriosis model also show a clear trend towards decreased development of endometriosis in animals treated with angiogenesis inhibitors at a dosage of one-third the dosage used to treat tumors. No effect on normal tissue that was not proliferating, other than adipose tissue, was observed.
    • 血管生成抑制剂以有效调节正常,非转化的血管化组织尺寸和/或通过调节其血管隔室生长的量施用于患者。 可以控制的组织的实例包括脂肪组织,肠息肉,肌肉(包括心脏)组织和子宫内膜组织。 这些组织对血管生成抑制剂的反应是剂量依赖性的,可逆的,并且对多种不同的血管发生抑制剂是常见的(实例使用TNP-470,血管抑素和内皮抑制素),基于对肥胖,肠息肉动物模型的研究, 心脏肥大和子宫内膜异位症。 在脂肪组织模型(遗传肥胖小鼠和正常对照小鼠)中进行的初步研究表明,脂肪组织的生长和质量处于微血管内皮的控制之下。 脂肪组织的扩张与内皮细胞增殖有关。 抑制血管生成导致脂肪组织质量下降。 接受血管生成抑制剂的动物的体重增加受到显着限制,尽管食欲增加足以引起配对饲喂小鼠的体重增加。 抑制剂的停用导致脂肪组织的快速释放。 该效应是剂量依赖性的,反复可逆的,并且响应所有测试的抑制剂而发生。 在肠息肉和心脏肥大动物模型中也观察到显着的抑制作用,其使用剂量为用于治疗肿瘤的剂量的三分之二或更少。 子宫内膜异位症模型的初步结果也显示出以血管生成抑制剂治疗的动物减少子宫内膜异位症发展的明显趋势,其剂量为用于治疗肿瘤的剂量的三分之一。 观察到除了脂肪组织之外对正常组织没有增殖的影响。
    • 188. 发明授权
    • Preparation of particles for inhalation
    • 吸入颗粒的制备
    • US5985309A
    • 1999-11-16
    • US971791
    • 1997-11-17
    • David A. EdwardsRobert S. LangerRita VanbeverJeffrey MintzesJue WangDonghao Chen
    • David A. EdwardsRobert S. LangerRita VanbeverJeffrey MintzesJue WangDonghao Chen
    • A61K9/16A61K31/135A61K31/137A61K38/28A61K38/38A61K13/00
    • A61K9/1647A61K31/135A61K31/137A61K38/28A61K38/38
    • Particles incorporating a surfactant and/or a hydrophilic or hydrophobic complex of a positively or negatively charged therapeutic agent and a charged molecule of opposite charge for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the particles are made of a biodegradable material and have a tap density less than 0.4 g/cm.sup.3 and a mass mean diameter between 5 .mu.m and 30 .mu.m, which together yield an aerodynamic diameter of the particles of between approximately one and three microns. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of poly(lactic acid) or poly(glycolic acid) or copolymers thereof. Alternatively, the particles may be formed solely of a therapeutic or diagnostic agent and a surfactant. Surfactants can be incorporated on the particle surface for example by coating the particle after particle formation, or by incorporating the surfactant in the material forming the particle prior to formation of the particle. Exemplary surfactants include phosphoglycerides such as dipalmitoyl phosphatidylcholine (DPPC). The particles can be effectively aerosolized for administration to the respiratory tract to permit systemic or local delivery of wide a variety of therapeutic agents. Formation of complexes of positively or negatively charged therapeutic agents with molecules of opposite charge can allow control of the release rate of the agents into the blood stream following administration.
    • 提供了将具有正或负电荷的治疗剂的表面活性剂和/或亲水或疏水配合物和用于药物递送至肺系统的带电分子的相反电荷的颗粒,以及用于其合成和给药的方法。 在优选的实施方案中,颗粒由可生物降解的材料制成,并且具有小于0.4g / cm 3的振实密度和5μm至30μm之间的质量平均直径,其一起产生颗粒的空气动力学直径在约 一和三微米。 颗粒可以由可生物降解的材料如可生物降解的聚合物形成。 例如,颗粒可以由聚(乳酸)或聚(乙醇酸)或其共聚物形成。 或者,颗粒可以仅由治疗剂或诊断剂和表面活性剂形成。 表面活性剂可以结合在颗粒表面上,例如通过在颗粒形成之后涂覆颗粒,或者通过在形成颗粒之前将表面活性剂并入形成颗粒的材料中。 示例性表面活性剂包括磷酸甘油酯,例如二棕榈酰磷脂酰胆碱(DPPC)。 这些颗粒可以有效地雾化,用于给呼吸道施用以允许全身或局部递送各种各样的治疗剂。 正电荷或带负电荷的治疗剂与相反电荷分子的复合物的形成可以允许在给药后将药剂释放到血流中的释放速率。