会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 151. 发明授权
    • Displacement amount monitoring electrode arrangement
    • 位移量监测电极布置
    • US08991252B2
    • 2015-03-31
    • US13579089
    • 2011-08-26
    • Katsutoshi Narita
    • Katsutoshi Narita
    • G01P15/125G01C19/56G01C19/5747
    • G01P15/125G01C19/5747
    • According to a displacement amount monitoring electrode arrangement, there are a linear change region in which the change amount of capacitance changes linearly with the displacement of the movable electrode in the predetermined axis direction, and a nonlinear change region in which the change amount of the capacitance changes nonlinearly with the displacement of the movable electrode in the predetermined axis direction. The nonlinear change region includes a characteristic in which a change sensitivity of the change amount of the capacitance with respect to the displacement amount of the movable electrode in the predetermined axis direction is greater than that in the linear change region, and a target capacitance change amount of the capacitance when the displacement of the movable electrode in the predetermined axis direction reaches a target displacement amount corresponding to the target amplitude is set in the nonlinear change region.
    • 根据位移量监视电极装置,存在线性变化区域,其中电容变化量随着可动电极在预定轴方向上的位移而线性变化,并且存在电容变化量的非线性变化区域 随着可动电极在规定的轴方向的位移而非线性地变化。 非线性变化区域包括电容变化量相对于可动电极在规定轴方向的位移量的变化灵敏度大于线性变化区域的变化灵敏度的特性,以及目标电容变化量 在非线性变化区域中设定当可动电极在规定轴方向上的位移达到与目标振幅对应的目标位移量时的电容值。
    • 154. 发明申请
    • HORIZONTAL AND TUNING FORK VIBRATORY MICROGYROSCOPE
    • 水平和调音台振动微波
    • US20050109107A1
    • 2005-05-26
    • US10888591
    • 2004-07-12
    • Kyu Park
    • Kyu Park
    • G01C19/00G01C19/56G01C19/5712G01C19/5747G01P9/04G01P15/14
    • G01C19/56
    • A horizontal and tuning fork vibratory microgyroscope detects angular velocity and angular acceleration of an inertial object when the inertial object is rotated, wherein resonance directions of the microgyroscope are on the same horizontal plane in both sensing and driving modes. The microgyroscope includes a substrate, an anchored pad unit, an outer elastic element unit, an outer frame, a sensing electrode unit, an inner elastic element unit including a plurality of inner elastic elements connected to the inside of the outer frame, an inner weighted element unit including a pair of first and second inner weighted elements each having a driven comb, and a driven electrode unit including a comb drive forming a comb structure.
    • 当惯性物体旋转时,水平和音叉振动微陀螺仪检测惯性物体的角速度和角加速度,其中微陀螺仪的谐振方向在感测和驾驶模式中处于同一水平面上。 微陀螺仪包括基底,锚定垫单元,外弹性元件单元,外框架,感测电极单元,内弹性元件单元,其包括连接到外框内部的多个内弹性元件,内加权 元件单元包括一对第一和第二内部加权元件,每个元件具有从动梳子,以及驱动电极单元,其包括形成梳状结构的梳状驱动器。
    • 156. 发明授权
    • Micromachined rate and acceleration sensor
    • 微加速度和加速度传感器
    • US5920011A
    • 1999-07-06
    • US786185
    • 1997-01-20
    • Rand H. Hulsing, II
    • Rand H. Hulsing, II
    • F02G1/044F16L37/24G01C19/5719G01C19/5747G01P15/08G01P15/097G01P15/10G01P15/18G01P9/04
    • G01P15/18F02G1/044F02G1/0445F16L37/24G01C19/5719G01C19/5747G01P15/0802G01P15/097F02G2250/18F02G2253/03F16F2230/0052F16F2230/34G01P2015/0828Y10S73/01
    • A sensor (10) is disclosed for measuring the specific force and angular rotation rate of a moving body and is micromachined from a silicon substrate (16). First and second accelerometers (32a and b) are micromachined from the silicon substrate (16), each having a force sensing axis (38) and producing an output signal of the acceleration of the moving body along its force sensing axis (38). The first and second accelerometers (32a and b) are mounted within the substrate (16) to be moved along a vibration axis (41). The first and second accelerometers (32a and b) are vibrated or dithered to increase the Coriolis component of the output signals from the first and second accelerometers (32a and b). A sinusoidal drive signal of a predetermined frequency is applied to a conductive path (92) disposed on each of the accelerometers. Further, magnetic flux is directed to cross each of the conductive paths (92), whereby the interaction of the magnetic flux and of the drive signal passing therethrough causes the desired dithering motion. A link (72) is formed within the silicon substrate (16) and connected to each of the accelerometers (32a and b), whereby motion imparted to one results in a like, but opposite motion applied to the other accelerometer (32). Further, a unitary magnet (20) and its associated flux path assembly direct and focus the magnetic flux through the first and second accelerometers (32a and b) formed within the silicon substrate (16).
    • 公开了一种用于测量移动体的比力和角度旋转速度的传感器(10),并且从硅衬底(16)进行微加工。 第一和第二加速度计(32a和b)从硅衬底(16)微加工,每个具有力感测轴(38),并且沿其力感测轴线(38)产生运动体的加速度的输出信号。 第一和第二加速度计(32a和b)安装在基板(16)内以沿着振动轴线(41)移动。 第一和第二加速度计(32a和b)被振动或抖动以增加来自第一和第二加速度计(32a和b)的输出信号的科里奥利分量。 将预定频率的正弦驱动信号施加到设置在每个加速度计上的导电路径(92)。 此外,磁通被引导以穿过每个导电路径(92),由此磁通和通过其的驱动信号的相互作用引起期望的抖动运动。 在硅衬底(16)内形成连接件(72)并连接到每个加速度计(32a和b),由此赋予一个运动的运动导致施加到另一个加速度计(32)的相似但相反的运动。 此外,单一磁体(20)及其相关联的磁通路组件将磁通量通过形成在硅衬底(16)内的第一和第二加速度计(32a和b)引导并聚焦。
    • 158. 发明授权
    • Micromachined rate and acceleration sensor
    • 微型速率和加速度传感器
    • US5241861A
    • 1993-09-07
    • US653533
    • 1991-02-08
    • Rand H. Hulsing, II
    • Rand H. Hulsing, II
    • F02G1/044F16L37/24G01C19/5719G01C19/5747G01P15/08G01P15/097G01P15/10G01P15/18
    • G01P15/18F02G1/044F02G1/0445F16L37/24G01C19/5719G01C19/5747G01P15/0802G01P15/097F02G2250/18F02G2253/03F16F2230/0052F16F2230/34G01P2015/0828Y10S73/01
    • A sensor (10) is disclosed for measuring the specific force and angular rotation rate of a moving body and is micromachined from a silicon substrate (16). First and second accelerometers (32a and b) are micromachined from the silicon substrate (16), each having a force sensing axis (38) and producing an output signal of the acceleration of the moving body along its force sensing axis (38). The first and second accelerometers (32a and b) are mounted within the substrate (16) to be moved along a vibration axis (41). The first and second accelerometers (32a and b) are vibrated or dithered to increase the Coriolis component of the output signals from the first and second accelerometers (32a and b). A sinusoidal drive signal of a predetermined frequency is applied to a conductive path (92) disposed on each of the accelerometers. Further, magnetic flux is directed to cross each of the conductive paths (92), whereby the interaction of the magnetic flux and of the drive signal passing therethrough causes the desired dithering motion. A link (72) is formed within the silicon substrate (16) and connected to each of the accelerometers (32a and b), whereby motion imparted to one results in a like, but opposite motion applied to the other accelerometer (32). Further, a unitary magnet (20) and its associated flux path assembly direct and focus the magnetic flux through the first and second accelerometers (32a and b) formed within the silicon substrate (16).
    • 公开了一种用于测量移动体的比力和角度旋转速度的传感器(10),并且从硅衬底(16)进行微加工。 第一和第二加速度计(32a和b)从硅衬底(16)微加工,每个具有力感测轴(38),并且沿其力感测轴线(38)产生运动体的加速度的输出信号。 第一和第二加速度计(32a和b)安装在基板(16)内以沿着振动轴线(41)移动。 第一和第二加速度计(32a和b)被振动或抖动以增加来自第一和第二加速度计(32a和b)的输出信号的科里奥利分量。 将预定频率的正弦驱动信号施加到设置在每个加速度计上的导电路径(92)。 此外,磁通被引导以穿过每个导电路径(92),由此磁通和通过其的驱动信号的相互作用引起期望的抖动运动。 在硅衬底(16)内形成连接件(72)并连接到每个加速度计(32a和b),由此赋予一个运动的运动导致施加到另一个加速度计(32)的相似但相反的运动。 此外,单一磁体(20)及其相关联的磁通路组件将磁通量通过形成在硅衬底(16)内的第一和第二加速度计(32a和b)引导并聚焦。