会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 101. 发明授权
    • Sensor for semiconductor device manufacturing process control
    • 半导体器件制造过程控制传感器
    • US5293216A
    • 1994-03-08
    • US638472
    • 1990-12-31
    • Mehrdad M. Moslehi
    • Mehrdad M. Moslehi
    • G01B11/06G01B11/30G03F7/20H01L21/00H01L21/66H01L21/68B23K26/00G01N21/00
    • H01L21/682G01B11/0616G01B11/303G03F7/70483H01L21/67207H01L21/67253H01L22/12
    • A fiber-optic sensor device (210) for semiconductor device manufacturing process control measures polycrystalline film thickness as well as surface roughness and spectral emissivity of semiconductor wafer (124). The device (210) comprises a sensor arm (212) and an opto-electronic interface and measurement box (214), for directing coherent laser energy in the direction of semiconductor wafer (124). Opto-electronic interface/measurement unit (214) includes circuitry for measuring the amounts of laser power coherently reflected in the specular direction from the semiconductor wafer (124) surface, scatter reflected from the semiconductor wafer (124) surface, coherently transmitted in the specular direction through the semiconductor wafer (124), and scatter transmitted through the semiconductor wafer (124). The present invention determines the semiconductor wafer (124) surface roughness and spectral emissivity values using the measured optical powers of incident, specular reflected, scatter reflected, specular transmitted, and scatter transmitted beams.
    • 用于半导体器件制造工艺控制的光纤传感器装置(210)测量半导体晶片(124)的多晶膜厚度以及表面粗糙度和光谱发射率。 装置(210)包括传感器臂(212)和光电接口和测量盒(214),用于在半导体晶片(124)的方向上引导相干激光能量。 光电接口/测量单元(214)包括用于测量从半导体晶片(124)表面在镜面方向上相干反射的激光功率的量的电路,从半导体晶片(124)表面反射的散射,在镜面相干透射 方向穿过半导体晶片(124),并且散射透射通过半导体晶片(124)。 本发明使用入射,镜面反射,散射反射,镜面透射和散射透射光束的测量光焦度来确定半导体晶片(124)的表面粗糙度和光谱发射率值。
    • 102. 发明授权
    • Method and apparatus for semiconductor device fabrication diagnosis and
prognosis
    • 半导体器件制造诊断和预后的方法和装置
    • US5270222A
    • 1993-12-14
    • US638468
    • 1990-12-31
    • Mehrdad M. Moslehi
    • Mehrdad M. Moslehi
    • G01B11/06G01B11/30G03F7/20H01L21/00H01L21/66H01L21/68G01J1/16H01L21/268
    • H01L21/682B24B37/013G01B11/0616G01B11/303G03F7/70483H01L21/67207H01L21/67253H01L21/67276H01L22/20H01L22/26H01L22/12
    • A sensor (210) for diagnosis and prognosis of semiconductor device fabrication processes measures specular, scattered, and total surface reflectances and transmittances of semiconductor wafers (124). The sensor (210) comprises a sensor arm (212) and an opto-electronic control box (214), for directing coherent electromagnetic or optical energy in the direction of semiconductor wafer (124). Opto-electronic control box (214) includes circuitry for measuring the amounts of laser powers coherently reflected from and transmitted through the semiconductor wafer (124) surface and the amounts of electromagnetic powers scatter reflected from and transmitted through the semiconductor wafer (124) surface. The present invention determines specular, scattered, and total reflectance and transmittance as well as surface roughness values for semiconductor wafer (124) based on measurements of coherent and scatter reflected and transmitted laser powers. The sensor (210) of the present invention can also provide a go/no-go test of semiconductor fabrication process quality. A process control computer associates with the sensor (210) to respond to spectral reflectance and transmittance measurements yielding surface roughness and thickness measurements as well as diagnosis/prognosis analysis results and control signals.
    • 用于半导体器件制造工艺的诊断和预测的传感器(210)测量半导体晶片(124)的镜面,散射和总表面反射率和透射率。 传感器(210)包括传感器臂(212)和光电子控制箱(214),用于在半导体晶片(124)的方向上引导相干的电磁或光能。 光电子控制盒(214)包括用于测量从半导体晶片(124)表面相干反射并透射通过半导体晶片(124)表面的激光功率的量以及从半导体晶片(124)表面反射并透射通过半导体晶片(124)表面的电磁功率的量。 本发明基于相干和散射反射和透射的激光功率的测量来确定半导体晶片(124)的镜面,散射,全反射率和透射率以及表面粗糙度值。 本发明的传感器(210)还可以提供半导体制造工艺质量的去/禁止测试。 过程控制计算机与传感器(210)相关联,以响应光谱反射率和透射率测量,产生表面粗糙度和厚度测量以及诊断/预后分析结果和控制信号。
    • 105. 发明授权
    • SOI/semiconductor heterostructure fabrication by wafer bonding of
polysilicon to titanium
    • SOI /半导体异质结构通过多晶硅与钛的晶片结合制造
    • US5102821A
    • 1992-04-07
    • US633647
    • 1990-12-20
    • Mehrdad M. Moslehi
    • Mehrdad M. Moslehi
    • H01L21/20
    • H01L21/2007Y10S148/012Y10S148/135
    • This is a method of forming a semiconductor-on-insulator wafer from two individual wafers. The method comprises: forming a layer of metal (e.g. titanium 24) on a first wafer; forming an insulator (e.g. oxide 32) on a second wafer; forming a bonding layer (e.g. poly 38) over the insulator; anisotropically etching the bonding layer forming chambers in the bonding layer; stacking the first and second wafers with the metal against the second wafer's bonding layer; forming a chemical bond between the metal layer and the bonding layer (e.g. between the titanium 20 and the poly 38) in a vacuum chamber, thereby creating micro-vacuum chambers (42) between the wafers; selectively etching the second wafer to form a thin semiconductor layer (e.g. epi layer 30). This is also a semiconductor-on-insulator wafer. The wafer comprises: a substrate (e.g. semiconductor substrate 20); a layer of metal (e.g. titanium 24) and semiconductor (e.g. silicide 40) over the substrate; a bonding layer (e.g. poly 38) over the metal and semiconductor, with micro-vacuum chambers (42) in the bonding layer; an insulator (e.g. oxide 32) over the bonding layer; and a single-crystal semiconductor layer (e.g. epi lyaer 30) over the insulator.
    • 这是从两个单独的晶片形成绝缘体上半导体晶片的方法。 该方法包括:在第一晶片上形成金属层(例如钛24); 在第二晶片上形成绝缘体(例如氧化物32); 在所述绝缘体上形成结合层(例如聚38); 各向异性地蚀刻接合层中的接合层形成室; 将第一和第二晶片与金属堆叠在第二晶片的接合层上; 在真空室中形成金属层与结合层(例如钛20和多晶硅38之间)之间的化学键,从而在晶片之间形成微型真空室(42); 选择性地蚀刻第二晶片以形成薄的半导体层(例如外延层30)。 这也是绝缘体上半导体晶片。 晶片包括:衬底(例如半导体衬底20); 一层金属(例如钛24)和半导体(例如硅化物40); 在金属和半导体上的结合层(例如聚38),在接合层中具有微型真空室(42); 绝缘体(例如氧化物32); 和绝缘体上的单晶半导体层(例如外延片30)。
    • 106. 发明授权
    • Low-temperature in-situ dry cleaning process for semiconductor wafers
    • 用于半导体晶圆的低温原位干洗工艺
    • US5089441A
    • 1992-02-18
    • US509251
    • 1990-04-16
    • Mehrdad M. Moslehi
    • Mehrdad M. Moslehi
    • H01L21/306
    • H01L21/02046H01L21/02049Y10S148/017Y10S438/909
    • A low-temperature (650.degree. C. to 800.degree. C.) in-situ dry cleaning process (FIG. 2) for removing native oxide (and other contaminants) from a semiconductor surface can be used with either multi-wafer or single-wafer semiconductor device manufacturing reactors. A wafer is contacted with a dry cleaning mixture of germane GeH.sub.4 and hydrogen gas (51), such that the germane:hydrogen flow ratio is less than about 0.15:12000 sccm. The dry cleaning mixture can include a halogen-containing gas (such as HCl or HBr) (52, 54) to enhance cleaning of metallic contaminants, and/or anhydrous HF gas (53, 54) to further lower the process temperature. The dry cleaning process can be achieved by introducing some or all of the hydrogen and/or an inert gas as a remote plasma. The dry cleaning process is adaptable as a precleaning step for multiprocessing methodologies that, during transitions between process steps, reduce thermal cycling (FIGS. 3c-3e) by reducing wafer temperature only to an idle temperature (350.degree. C.), and by reducing vacuum cycling by maintaining flow rates for constant gases (FIG. 3c), thereby substantially reducing thermal stress and adsorption of residual impurities, while limiting dopant redistribution.
    • 用于从半导体表面去除天然氧化物(和其他污染物)的低温(650℃至800℃)的原位干洗过程(图2)可以与多晶圆或单晶 晶圆半导体器件制造电抗器。 将晶片与锗烷GeH4和氢气(51)的干洗混合物接触,使得锗烷:氢流量比小于约0.15:12000sccm。 干洗混合物可以包括含卤素气体(例如HCl或HBr)(52,54)以增强金属污染物的清洁,和/或无水HF气体(53,54)以进一步降低工艺温度。 可以通过引入一些或全部氢和/或惰性气体作为远程等离子体来实现干洗过程。 干式清洗方法适用于多处理方法的预清洗步骤,在工艺步骤之间的转换期间,通过将晶片温度降低到空闲温度(350℃),并通过减少热处理步骤减少热循环(图3c-3e) 通过保持恒定气体的流量来实现真空循环(图3c),从而在限制掺杂剂再分布的同时,显着降低热应力和残留杂质的吸附。
    • 107. 发明授权
    • Plasma-assisted processing magneton with magnetic field adjustment
    • 等离子体辅助处理磁铁与磁场调整
    • US5079481A
    • 1992-01-07
    • US561741
    • 1990-08-02
    • Mehrdad M. Moslehi
    • Mehrdad M. Moslehi
    • H01J37/32
    • H01J37/32623H01J37/3266
    • A magnetron plasma processing module (20) with magnetic field adjustment for magnetron-plasma-enhanced processing of a semiconductor wafer includes a magnetron housing, a plurality of magnets (44), and magnetically conductive pins (26) for varying the magnetic field distribution and strength at the semiconductor wafer (52). Top plate (34) adjustably engages magnetically conductive pins (26). A magnetically nonconductive cylinder (36) supports top plate (34) and receives pins (26) from top plate (34). Magnet assembly (40) connects to cylinder (36) and contains magnets (44). Magnet assembly (40) also has bore (82) to receive pins (26). Magnetically conductive ring (38) separates cylinder (36) from magnet assembly (40) and engages pins (26) to isolate the magnetic field from cylinder (36). Magnets (44) and extension iron bars associate with magnet assembly (40) to establish the magnetic field having adjustable uniformity. Iron bars (42) associate with magnets (44) to aid in producing a uniform magnetic field at semiconductor (52). The magnetron module (20) can be rotated to achieve uniform magnetron plasma processing.
    • 具有用于半导体晶片的磁控管等离子体增强处理的磁场调整的磁控管等离子体处理模块(20)包括磁控管外壳,多个磁体(44)和用于改变磁场分布的导磁引脚(26) 半导体晶片(52)的强度。 顶板(34)可调节地接合磁导销(26)。 磁性非导电圆筒(36)支撑顶板(34)并从顶板(34)接收销(26)。 磁体组件(40)连接到气缸(36)并且包含磁体(44)。 磁体组件(40)还具有用于接收销(26)的孔(82)。 磁导电环(38)将气缸(36)与磁体组件(40)分离,并接合销(26)以将磁场与气缸(36)隔离。 磁体(44)和延伸铁棒与磁体组件(40)相关联,以建立具有可调均匀性的磁场。 铁棒(42)与磁体(44)相关联以帮助在半导体(52)处产生均匀的磁场。 可以旋转磁控管模块(20)以实现均匀的磁控管等离子体处理。
    • 108. 发明授权
    • Method and apparatus for real-time wafer temperature measurement using
infrared pyrometry in advanced lamp-heated rapid thermal processors
    • 在先进的灯加热快速热处理器中使用红外光谱法进行实时晶片温度测量的方法和装置
    • US4956538A
    • 1990-09-11
    • US242755
    • 1988-09-09
    • Mehrdad M. Moslehi
    • Mehrdad M. Moslehi
    • G01J5/00
    • G01J5/0003G01J2005/0074
    • A first and second pyrometer (26-28) are optically coupled by a light pipe (24) to a wafer (30) in an apparatus (10). The light pipe (24) passes through a shroud (16) of a heating lamp module (14). A computer (74) is interconnected to the pyrometers (26-28) and a lamp module power supply (80). A laser (48) emits a laser beam (50) through a power meter (86) onto an infrared mirror (56) over the light pipe (24). The mirror (56) directs the beam onto wafer (30) which reflects a portion of the beam back to the infrared mirror (56). The beam is then guided to an infrared photo-detector (58) which provides, in combination with the incident laser beam power meter (86), reflectance of the wafer surface for the laser beam which is related to wafer emissivity. The spectral infrared emissivity measurement can be performed more accurately over an extended temperature range if the transmissivity of the wafer is determined by another infrared photodetector (59) and both the measured wafer reflectance and transmissivity data are used to calculate the emissivity. Wafer emissivity data and pyrometers reading data are evaluated by the computer (74) to determine the true wafer temperature in real-time and to raise or lower the power output from the power supply (80) to adjust the wafer temperature within the apparatus (10).
    • 在设备(10)中,第一和第二高温计(26-28)通过光管(24)光学耦合到晶片(30)。 光管(24)穿过加热灯模块(14)的护罩(16)。 计算机(74)与高温计(26-28)和灯模块电源(80)互连。 激光器(48)通过功率计(86)将激光束(50)发射到光管(24)上的红外反射镜(56)上。 反射镜(56)将光束引导到将光束的一部分反射回红外镜(56)的晶片(30)上。 然后将光束引导到红外光电检测器(58),红外光电检测器(58)与入射激光束功率计(86)组合提供与晶片发射率相关的激光束的晶片表面的反射率。 如果晶片的透射率由另一个红外光电检测器(59)确定,并且使用测量的晶片反射率和透射率数据来计算发射率,则可以在扩展的温度范围内更精确地执行光谱红外发射率测量。 计算机(74)评估晶片发射率数据和高温计读数据,以实时确定真晶片温度,并提高或降低从电源(80)输出的功率,以调节装置(10)内的晶片温度 )。