会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 103. 发明申请
    • PRIVACY AND MODELING PRESERVED DATA SHARING
    • 保密和建模保存数据共享
    • US20160283735A1
    • 2016-09-29
    • US14667163
    • 2015-03-24
    • International Business Machines Corporation
    • Jun WangJinfeng Yi
    • G06F21/62G06N99/00
    • G06N20/00G06F21/6254
    • A system, method and computer program product for generating a classification model using original data that is sensitive or private to a data owner. The method includes: receiving, from one or more entities, a masked data set having masked data corresponding to the original sensitive data, and further including a masked feature label set for use in classifying the masked data contents; forming a shared data collection of the masked data and the masked feature label sets received; and training, by a second entity, a classification model from the shared masked data and feature label sets, wherein the classification model learned from the shared masked data and feature label sets is the same as a classification model learned from the original sensitive data. The sensitive features and labels cannot be reliably recovered even when both the masked data and the learning algorithm are known.
    • 一种用于使用对数据所有者敏感或私有的原始数据生成分类模型的系统,方法和计算机程序产品。 该方法包括:从一个或多个实体接收具有与原始敏感数据相对应的掩蔽数据的掩蔽数据集,并且还包括用于对掩蔽的数据内容进行分类的掩蔽特征标签集; 形成所接收的掩蔽数据和被掩蔽的特征标签集合的共享数据收集; 以及由第二实体从所述共享屏蔽数据和特征标签集合训练分类模型,其中从所述共享屏蔽数据和特征标签集中学习的分类模型与从所述原始敏感数据获得的分类模型相同。 即使已知掩蔽的数据和学习算法两者,敏感特征和标签也无法可靠地恢复。
    • 107. 发明申请
    • METHOD, SYSTEM AND COMPUTER PROGRAM PRODUCT FOR AUTOMATING EXPERTISE MANAGEMENT USING SOCIAL AND ENTERPRISE DATA
    • 使用社会和企业数据自动化专业管理的方法,系统和计算机程序产品
    • US20150317376A1
    • 2015-11-05
    • US14266970
    • 2014-05-01
    • International Business Machines Corporation
    • John H. BauerDongping FangAleksandra MojsilovicKarthikeyan N. RamamurthyKush R. VarshneyJun Wang
    • G06F17/30G06N5/02
    • G06N7/005G06F16/285G06F16/9024G06N5/02G06Q10/06G06Q10/105
    • A method includes performing contextual association of entities using multi-source data. For each context the method performs co-clustering to identify distinct expert-skill associations; constructing single-entity unipartite graph representations and performing a random walk within each single-entity unipartite graph; for each single-entity unipartite graph, obtaining steady state distributions using the random walks to obtain clusters of experts and skills; performing a weighted two-way random walk across entity graphs (graph edges), giving preference to traversal within members of the same co-cluster; and performing link prediction for each context by dynamically adding edges, and obtaining overall skills predictions, analyses and inferences by merging the contexts and weighting the links of each context. The method can also use the context-specific weights obtained from the co-association information in a matrix completion procedure, and finally merge the context-specific outputs to obtain overall skills predictions, analyses and inferences. A computer program product and a system are also disclosed for performing the method.
    • 一种方法包括使用多源数据来执行实体的上下文关联。 对于每个上下文,该方法执行共同聚集以识别不同的专家技能关联; 构建单实体单边图表示,并在每个单实体单边图中执行随机游走; 对于每个单实体单边图,使用随机游走获得稳态分布,以获得专家和技能的集群; 在实体图(图形边缘)上执行加权双向随机游走,优先考虑同一共同群集成员内的遍历; 并通过动态添加边缘来执行每个上下文的链接预测,并通过合并上下文并加权每个上下文的链接来获得整体技能预测,分析和推理。 该方法还可以使用在矩阵完成过程中从共同关联信息获得的上下文特定权重,并且最终合并上下文特定输出以获得总体技能预测,分析和推论。 还公开了一种用于执行该方法的计算机程序产品和系统。