会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 91. 发明授权
    • Apparatus and methods for in-space satellite operations
    • 空间卫星操作的装置和方法
    • US5803407A
    • 1998-09-08
    • US427419
    • 1995-04-21
    • David R. Scott
    • David R. Scott
    • B64G1/10B64G1/24B64G1/26B64G1/28B64G1/36B64G1/40B64G1/64H04B7/155
    • B64G1/1078B64G1/24B64G1/242B64G1/26B64G1/36B64G1/646B64G1/285B64G1/288B64G1/401
    • The life of a target satellite is modified, i.e., extended or terminated by docking an extension spacecraft with the target satellite to form a docked satellite-spacecraft combination. The extension spacecraft is docked with and mechanically connected to the target satellite and includes guidance, navigation, and control systems for performing the rendezvous and docking maneuvers and for controlling the position of the docked spacecraft-satellite combination. The extension spacecraft also includes an onboard propellant supply for accomplishing the rendezvous and docking of the spacecraft with the satellite and for controlling the position of the docked spacecraft-satellite combination. A remote cockpit system is provided to permit human control of the extension spacecraft during proximity operations.
    • PCT No.PCT / US94 / 13052 Sec。 371日期1995年04月21日 102(e)日期1995年4月21日PCT 1994年11月14日PCT PCT。 公开号WO95 / 14611 PCT 日期1995年6月11日目标卫星的寿命被修改,即通过将扩展航天器与目标卫星对接延伸或终止以形成对接的卫星 - 航天器组合。 扩展航天器与目标卫星对接和机械连接,并包括用于执行会合和对接机动并用于控制对接的航天器 - 卫星组合的位置的引导,导航和控制系统。 扩展航天器还包括用于完成航天器与卫星的会合和对接以及用于控制对接的航天器 - 卫星组合的位置的船上推进剂供应。 提供一个远程驾驶舱系统,以便在接近操作期间允许对扩展航天器进行人力控制。
    • 92. 发明授权
    • Temperature control for spacecraft inertial control unit
    • 航天器惯性控制单元的温度控制
    • US5799904A
    • 1998-09-01
    • US641020
    • 1996-04-25
    • Neil Evan GoodzeitArthur Jon Throckmorton
    • Neil Evan GoodzeitArthur Jon Throckmorton
    • B64G1/28B64G1/36B64G1/50B64G1/66G05D1/08
    • G05D1/0883B64G1/28B64G1/36B64G1/50B64G1/66B64G1/288
    • A spacecraft (10) has an attitude sensor (20) mounted on its body (12). The sensor must be maintained near a temperature setpoint. Each sensor (20) produces its own temperature-indicative signal. Each attitude sensor is coupled to a thermally conductive instrument platform (18). A standoff (21) supports the platform (18) away from a baseplate (16) and the spacecraft body (12). The standoff (21) includes a thermally conductive portion (22) adjacent the platform (18), and a nonconductive portion (24) remote from the platform. An electric heater (26) is connected to the thermally conductive portion (22) of the standoff (21). A temperature sensor (28) thermally coupled to the platform (18) generates platform temperature signals. A filter (212) high-pass filters either the platform temperature signals or the attitude sensor temperature signals, to form filtered signals. A combining circuit (218) combines the filtered signals with the other temperature signals, to make composite temperature signals. A difference arrangement (224) coupled to the setpoint source (226) and to the combining circuit (218) generates error signals by subtracting composite temperature signals from setpoint signals. A PI processor (232) generates heater drive signals by summing proportional and integral signals. A driver (232) drives the heater (26) in response to the heater drive signals. When plural attitude sensors are mounted on the platform, the attitude sensor temperatures are averaged before further processing. The filter (212) may have a cutoff frequency which is the reciprocal of the thermal delay between the heater (26) and the attitude sensors (20), and may have a low-pass noise characteristic.
    • 航天器(10)具有安装在其主体(12)上的姿态传感器(20)。 传感器必须保持在温度设定点附近。 每个传感器(20)产生其自己的温度指示信号。 每个姿态传感器耦合到导热仪器平台(18)。 支座(21)支撑平台(18)远离基板(16)和航天器本体(12)。 对接(21)包括邻近平台(18)的导热部分(22)和远离平台的非导电部分(24)。 电加热器(26)连接到支座(21)的导热部分(22)。 热耦合到平台(18)的温度传感器(28)产生平台温度信号。 过滤器(212)高通滤波平台温度信号或姿态传感器温度信号,以形成滤波信号。 组合电路(218)将滤波的信号与其它温度信号组合,以形成复合温度信号。 耦合到设定点源(226)和组合电路(218)的差分布置(224)通过从设定点信号中减去复合温度信号来产生误差信号。 PI处理器(232)通过将比例和积分信号相加来产生加热器驱动信号。 驱动器(232)响应于加热器驱动信号驱动加热器(26)。 当多个姿态传感器安装在平台上时,姿态传感器温度在进一步处理之前被平均化。 过滤器(212)可以具有作为加热器(26)和姿态传感器(20)之间的热延迟的倒数的截止频率,并且可以具有低通噪声特性。
    • 93. 发明授权
    • Method of controlling the attitude control for satellites on an orbit
inclined relative to the equator
    • 控制卫星在相对于赤道倾斜的轨道上的姿态控制的方法
    • US5794891A
    • 1998-08-18
    • US582441
    • 1996-01-03
    • Bernard PolleMarcel BillandBenoit Hanin
    • Bernard PolleMarcel BillandBenoit Hanin
    • B64G1/24B64G1/28B64G1/36B64G1/40B64G1/44B64G1/50
    • B64G1/44B64G1/24B64G1/503B64G1/285B64G1/363B64G1/407
    • The attitude of a satellite placed on a non-heliosynchronous earth orbit in a plane that is inclined relative to the equatorial plane of the earth is controlled for efficient use of solar panels and radiators. The satellite has a structure, solar panels apt to be rotated with respect to the structure rotation and two opposed radiators each fixed on one of two opposed faces of the satellite structure which are orthogonal to the rotation axis. One of the radiators has greater emissivity than the other. A yaw axis bound to the structure satellite and orthogonal to rotation axis is aimed towards the earth. The solar panels of the satellite are maintained in an optimum orientation relative to the sun by rotating them. At least during periods of each year when an angle .beta. between a sun-earth direction and the plane of the satellite orbit lies between two predetermined values, the satellite structure is rotated about the yaw axis to maintain the radiators in a plane parallel to a direction toward the sun so long as the satellite is remote from an orthogonal projection of the sun direction onto the satellite orbit plane. The orientation of the satellite structure is reversed when necessary to ensure that the radiator of higher emissivity is in shadow.
    • 控制放置在相对于地球赤道平面倾斜的平面上的非同步地球轨道上的卫星的姿态,以有效利用太阳能电池板和散热器。 卫星具有相对于结构旋转而易于旋转的太阳能电池板和两个相对的散热器,每个相对的散热器固定在与旋转轴线正交的卫星结构的两个相对的面之一上。 其中一个散热器的发射率比另一个更大。 与卫星结构相结合并与旋转轴正交的偏航轴瞄准地球。 通过旋转卫星,卫星的太阳能电池板相对于太阳保持最佳定向。 至少在每年的时期,当太阳地球方向和卫星轨道的平面之间的角度β位于两个预定值之间时,卫星结构围绕偏转轴线旋转,以将散热器保持在与方向平行的平面 只要卫星远离太阳方向的正交投影到卫星轨道平面上,朝向太阳。 必要时卫星结构的方向相反,以确保辐射率较高的散热器处于阴影中。
    • 94. 发明授权
    • Satellite spin inversion using a single degree of freedom momentum
storage device
    • 卫星自旋反转采用单自由度动量储存装置
    • US5758846A
    • 1998-06-02
    • US816727
    • 1997-03-13
    • Richard A. Fowell
    • Richard A. Fowell
    • B64G1/24B64G1/28B64G1/36B64G1/38G05D1/08
    • B64G1/24B64G1/281B64G1/285B64G1/288B64G1/36B64G1/38G05D1/0883B64G1/283B64G1/286B64G1/361B64G1/363B64G1/365
    • A method and system are disclosed for inverting a satellite spinning about a first desired spin axis to spin about a second desired spin axis substantially antiparallel to the first desired spin axis. A tumbling motion is induced in the satellite so that a spin axis of the satellite oscillates between the first desired spin axis and the second desired spin axis. The tumbling motion is induced by sensing at least one component of the angular rate vector and controlling a single degree of freedom momentum storage device based upon the at least one component of the angular rate vector. The single degree of freedom momentum storage device has an orientation of variation substantially perpendicular to the desired spin axis. The single degree of freedom momentum storage device is controlled so that the first desired spin axis is made an intermediate inertia axis of an effective inertia matrix. A capture point is detected at which the angular rate vector is sufficiently close to the second desired spin axis to be recaptured. After detecting the capture point, the single degree of freedom momentum storage device is controlled so that the angular rate vector substantially aligns with the second desired spin axis.
    • 公开了一种方法和系统,用于颠倒围绕第一期望自旋轴的卫星旋转,以围绕基本上反平行于第一所需旋转轴的第二期望自旋轴旋转。 在卫星中引起滚动运动,使得卫星的旋转轴在第一期望旋转轴和第二所需旋转轴之间振荡。 通过感测角速率矢量的至少一个分量并且基于角速率矢量的至少一个分量来控制单个自由度动量存储装置来感应翻滚运动。 单自由度动量存储装置具有基本上垂直于期望旋转轴的变化方向。 控制单自由度动量存储装置,使得第一期望旋转轴成为有效惯性矩阵的中间惯性轴。 检测捕获点,其中角速度矢量足够接近第二期望的旋转轴以被重新捕获。 在检测到捕获点之后,控制单个自由度动量存储装置,使得角速度矢量基本上与第二期望的旋转轴对齐。
    • 95. 发明授权
    • Satellite beam steering reference using terrestrial beam steering
terminals
    • 卫星波束转向参考使用地面波束转向终端
    • US5758260A
    • 1998-05-26
    • US518524
    • 1995-08-23
    • Robert A. Wiedeman
    • Robert A. Wiedeman
    • B64G1/10B64G1/24B64G1/36B64G1/66B64G3/00G05D1/08H04B7/195H04B7/204H04B7/216H04B7/185
    • H04B7/2041B64G1/24B64G1/363B64G1/365B64G1/366B64G3/00G05D1/0883B64G1/1007B64G1/66
    • A satellite communication system has at least one satellite (1) with an antenna that generates a moving beam pattern on the surface of the earth. The beam pattern (3) is comprised of a plurality of sub-beams (4). A method of this invention determines an attitude correction signal for the satellite by the steps of: (a) providing at least one reference transmitter (10) at a known location on the surface of the earth; (b) transmitting at least one signal from the at least reference transmitter into at least one of the sub-beams; (c) receiving the at least one signal with the satellite antenna and transponding the received at least one signal to a ground station (8). A next step of the method (d) receives the transponded at least one signal with the ground station; (e) determines a gain of the received at least one signal; (f) compares the determined gain to a gain expected to be received based on a predetermined knowledge of a spatial variation in gain of the satellite antenna; and (g) and determines a difference between the determined gain and the expected gain to derive a correction signal indicative of an attitude error of the satellite. The method further includes the steps of transmitting the correction signal to the satellite; and correcting the attitude of the satellite in accordance with the correction signal.
    • 卫星通信系统具有至少一个具有天线的卫星(1),其在地球表面上产生移动的波束图案。 光束图案(3)由多个子光束(4)组成。 本发明的方法通过以下步骤确定卫星的姿态校正信号:(a)在地球表面上的已知位置提供至少一个参考发射机(10); (b)将至少一个信号从所述至少参考发射机传送到所述子光束中的至少一个; (c)用所述卫星天线接收所述至少一个信号,并将所接收的至少一个信号转发到地面站(8)。 方法(d)的下一步骤接收与地面站的转发的至少一个信号; (e)确定所接收的至少一个信号的增益; (f)基于卫星天线的增益的空间变化的预定知识将所确定的增益与预期接收的增益进行比较; 和(g)并且确定所确定的增益和预期增益之间的差异,以导出指示卫星的姿态误差的校正信号。 该方法还包括以下步骤:将校正信号发送到卫星; 以及根据校正信号校正卫星的姿态。
    • 96. 发明授权
    • Method of adjusting the position of satellites by means of solar
pressure torques
    • 通过太阳能压力转矩调整卫星位置的方法
    • US5697582A
    • 1997-12-16
    • US146036
    • 1994-02-10
    • Michael SurauerHelmut Bittner
    • Michael SurauerHelmut Bittner
    • B64G1/24B64G1/28B64G1/36B64G1/40B64G1/44G05D1/08
    • B64G1/24B64G1/283B64G1/285B64G1/407B64G1/443B64G1/363B64G1/44
    • A method for adjusting the orientation and for compensating interfering torques via solar pressure torques for a satellite moving on an orbit around the earth. The satellite has two solar generators arranged symmetrically on opposite sides of a main body of the satellite. The two solar generators are rotatable independently of one another via servomotors about a first axis of rotation orthogonal to an orbiting plane of the satellite when the position of the satellite is correct. The method comprises the step of: optionally generating solar pressure torques about at least one of three space axes oriented orthogonally with respect to one another, as a result of an adjustment of the solar generators by a targeted rotation about second axes of rotation orthogonal to the first axis of rotation or about the first axis and the second axes of rotation, with respect to a nominal orientation in which the solar generator's normals to surfaces are precisely aligned in the direction of the sun.
    • PCT No.PCT / EP92 / 00995 Sec。 371日期:1994年2月10日 102(e)日期1994年2月10日PCT提交1992年5月7日PCT公布。 出版物WO92 / 19498 日期1992年11月12日一种用于通过太阳能压力转矩调整方位和补偿干扰转矩的方法,用于在围绕地球的轨道上移动的卫星。 卫星具有对称地布置在卫星主体的相对侧上的两个太阳能发电机。 当卫星的位置是正确的时,两个太阳能发电机可以通过伺服电动机彼此独立地彼此旋转,绕第一旋转轴正交于卫星的绕行平面。 该方法包括以下步骤:作为通过绕与第二轴正交的第二旋转轴线的目标旋转来调整太阳能发电机的结果,可选地产生围绕彼此正交定向的三个空间轴中的至少一个的太阳能压力扭矩 第一旋转轴线或围绕第一轴线和第二旋转轴线相对于其中太阳能发电机的正面与太阳的方向精确对准的标称取向。
    • 97. 发明授权
    • Satellite beam steering reference using terrestrial beam steering
terminals
    • 卫星波束转向参考使用地面波束转向终端
    • US5697050A
    • 1997-12-09
    • US764307
    • 1996-12-12
    • Robert A. Wiedeman
    • Robert A. Wiedeman
    • B64G1/10B64G1/24B64G1/36B64G1/66B64G3/00G05D1/08H04B7/195H04B7/204H04B7/216H04B7/15
    • H04B7/2041B64G1/24B64G1/363B64G1/365B64G1/366B64G3/00G05D1/0883B64G1/1007B64G1/66
    • A satellite communication system has at least one satellite (1) with an antenna that generates a moving beam pattern on the surface of the earth. The beam pattern (3) is comprised of a plurality of sub-beams (4). A method of this invention determines an attitude correction signal for the satellite by the steps of: (a) providing at least one reference transmitter (10) at a known location on the surface of the earth; (b) transmitting at least one signal from the at least reference transmitter into at least one of the sub-beams; (c) receiving the at least one signal with the satellite antenna and transponding the received at least one signal to a ground station (8). A next step of the method (d) receives the transponded at least one signal with the ground station; (e) determines a gain of the received at least one signal; (f) compares the determined gain to a gain expected to be received based on a predetermined knowledge of a spatial variation in gain of the satellite antenna; and (g) and determines a difference between the determined gain and the expected gain to derive a correction signal indicative of an attitude error of the satellite. The method further includes the steps of transmitting the correction signal to the satellite; and correcting the attitude of the satellite in accordance with the correction signal. For the case where the correction signal has a value that is a function of the yaw error angle of the satellite, the method further includes the steps of transmitting the correction signal to the satellite; and correcting the attitude of the satellite in accordance with the correction signal by rotating the satellite about the yaw axis so as to reduce a magnitude of the yaw error angle.
    • 卫星通信系统具有至少一个具有天线的卫星(1),其在地球表面上产生移动的波束图案。 光束图案(3)由多个子光束(4)组成。 本发明的方法通过以下步骤确定卫星的姿态校正信号:(a)在地球表面上的已知位置提供至少一个参考发射机(10); (b)将至少一个信号从所述至少参考发射机传送到所述子光束中的至少一个; (c)用所述卫星天线接收所述至少一个信号,并将所接收的至少一个信号转发到地面站(8)。 方法(d)的下一步骤接收与地面站的转发的至少一个信号; (e)确定所接收的至少一个信号的增益; (f)基于卫星天线的增益的空间变化的预定知识将所确定的增益与预期接收的增益进行比较; 和(g)并且确定所确定的增益和预期增益之间的差异,以导出指示卫星的姿态误差的校正信号。 该方法还包括以下步骤:将校正信号发送到卫星; 以及根据校正信号校正卫星的姿态。 对于校正信号具有作为卫星的偏航误差角的函数的值的情况,该方法还包括将修正信号发送到卫星的步骤; 以及通过围绕所述偏转轴旋转所述卫星来校正所述卫星的姿态,以便减小所述偏航误差角的大小。
    • 98. 发明授权
    • Satellite spin axis stabilization using a single degree of freedom
transverse momentum storage device
    • 卫星旋转轴稳定采用单自由度横向动量存储装置
    • US5667171A
    • 1997-09-16
    • US430636
    • 1995-04-28
    • Richard A. FowellJohn F. Yocum
    • Richard A. FowellJohn F. Yocum
    • B64G1/24B64G1/28B64G1/36B64G1/38G05D1/08
    • B64G1/24B64G1/281B64G1/285B64G1/288B64G1/36B64G1/38G05D1/0883B64G1/283B64G1/286B64G1/361B64G1/363B64G1/365
    • Methods and systems for stabilizing satellite spin about an intermediate inertia axis (Z) are disclosed. A set of gyros (22) sense the X component and the Y component of the angular velocity of the satellite body. A single degree of freedom momentum wheel (26) has a fixed transverse orientation with respect to the intermediate axis in order to store momentum. In one embodiment, the momentum wheel (26) is oriented to store momentum parallel to the Y axis. A tachometer (30) senses the rotation rate of the momentum wheel (26). A processor (24) forms a control signal representative of a control torque to be applied to the momentum wheel (26). The control torque is based upon the X component and the Y component of angular velocity of the satellite, and the angular velocity of the momentum wheel (26). These methods and systems may also be used to invert the spin direction of spinning satellites, ensure tumble recover to a preferred orientation, and stabilize the body spin axis against nutation, dynamic imbalance and external torques.
    • 公开了围绕中间惯性轴(Z)稳定卫星旋转的方法和系统。 一组陀螺仪(22)感测卫星体的角速度的X分量和Y分量。 单个自由度动量轮(26)相对于中间轴线具有固定的横向取向以便储存动量。 在一个实施例中,动量轮(26)被定向成存储平行于Y轴的动量。 转速计(30)感测动量轮(26)的旋转速度。 处理器(24)形成表示要施加到动量轮(26)的控制扭矩的控制信号。 控制扭矩基于卫星的角速度的X分量和Y分量以及动量轮(26)的角速度。 这些方法和系统也可以用于反转旋转卫星的旋转方向,确保滚筒恢复到优选的方向,并且使身体旋转轴线抵抗章动,动态不平衡和外部扭矩。
    • 99. 发明授权
    • Measuring arrangement useful for controlling the attitude of a
three-axis stabilized satellite, corresponding evaluation process,
regulating system and process
    • 用于控制三轴稳定卫星姿态的测量装置,相应的评估过程,调节系统和过程
    • US5558305A
    • 1996-09-24
    • US204324
    • 1994-07-27
    • Michael SurauerHelmut BittnerWalter FichterHorst-Dieter Fischer
    • Michael SurauerHelmut BittnerWalter FichterHorst-Dieter Fischer
    • B64G1/00B64G1/24B64G1/28B64G1/36G05D1/08
    • B64G1/363B64G1/007G05D1/0883B64G1/242B64G1/288B64G1/365B64G2001/245
    • A measurement arrangement is useful for controlling the attitude of a three-axis stabilized satellite equipped with sun-sensors for determining the orientation of the sun (sun vector) with respect to a satellite-fixed coordinate system, as well as with speed gyroscopes for detecting components of the satellite speed of rotation vector .omega.. It is necessary that the measurement range of the sun-sensors cover the round angle in a preselectable plane (for example XY plane) and perpendicularly thereto a limited angular range of maximum .+-..alpha..sub.2max on both sides of the plane. In addition, only an integrating speed gyroscope carrying out measurements in a single measurement axis that encloses with the plane an angle of at least (.pi./2)-.alpha..sub.2max should be provided. Also disclosed are an evaluation process for determining the satellite speed of rotation, as well as the satellite deviation with respect to a direction of reference, a regulating system for carrying out attitude control maneuvers using the measurement arrangement and the evaluation process, and a corresponding regulating process.
    • PCT No.PCT / EP92 / 02051 Sec。 371日期:1994年7月27日 102(e)日期1994年7月27日PCT提交1992年9月4日PCT公布。 公开号WO93 / 04923 日期1993年3月18日测量安排对于控制配备有太阳传感器的三轴稳定卫星的姿态有助于确定太阳(太阳矢量)相对于卫星固定坐标系的方向,以及 用于检测卫星旋转矢量ω的分量的速度陀螺仪。 太阳传感器的测量范围必须覆盖预选平面(例如XY平面)中的圆角并垂直于平面两侧的最大+/- alpha2max的有限角度范围。 此外,只应提供在单个测量轴上进行测量的积分速度陀螺仪,该测量轴与平面包围至少(pi / 2)-a2max的角度。 还公开了用于确定卫星旋转速度以及相对于参考方向的卫星偏差的评估过程,用于使用测量装置和评估过程执行姿态控制机动的调节系统,以及相应的调节 处理。