会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 91. 发明授权
    • Feedback loop for spam prevention
    • 防止垃圾邮件的反馈回路
    • US07219148B2
    • 2007-05-15
    • US10378463
    • 2003-03-03
    • Robert L. RounthwaiteJoshua T. GoodmanDavid E. HeckermanJohn D. MehrNathan D. HowellMicah C. RupersburgDean A. Slawson
    • Robert L. RounthwaiteJoshua T. GoodmanDavid E. HeckermanJohn D. MehrNathan D. HowellMicah C. RupersburgDean A. Slawson
    • G06F15/173
    • H04L51/12G06Q10/107
    • The subject invention provides for a feedback loop system and method that facilitate classifying items in connection with spam prevention in server and/or client-based architectures. The invention makes uses of a machine-learning approach as applied to spam filters, and in particular, randomly samples incoming email messages so that examples of both legitimate and junk/spam mail are obtained to generate sets of training data. Users which are identified as spam-fighters are asked to vote on whether a selection of their incoming email messages is individually either legitimate mail or junk mail. A database stores the properties for each mail and voting transaction such as user information, message properties and content summary, and polling results for each message to generate training data for machine learning systems. The machine learning systems facilitate creating improved spam filter(s) that are trained to recognize both legitimate mail and spam mail and to distinguish between them.
    • 本发明提供了一种反馈循环系统和方法,其有助于在服务器和/或基于客户端的体系结构中与垃圾邮件防止相关联的项目进行分类。 本发明将机器学习方法应用于垃圾邮件过滤器,特别是随机抽取传入的电子邮件消息,以便获得合法和垃圾/垃圾邮件的示例以生成训练数据集。 被要求被识别为垃圾邮件战士的用户被要求投票选择他们的收到的电子邮件的选择是单独的合法邮件还是垃圾邮件。 数据库存储每个邮件和投票交易的属性,例如用户信息,消息属性和内容摘要,以及每个消息的轮询结果,以生成机器学习系统的训练数据。 机器学习系统便于创建改进的垃圾邮件过滤器,该过滤器被训练以识别合法邮件和垃圾邮件并区分它们。
    • 92. 发明授权
    • Staged mixture modeling
    • 分阶段混合建模
    • US07133811B2
    • 2006-11-07
    • US10270914
    • 2002-10-15
    • Bo ThiessonChristopher A. MeekDavid E. Heckerman
    • Bo ThiessonChristopher A. MeekDavid E. Heckerman
    • G06F17/10
    • G06K9/6226G06F17/18Y10S707/99935Y10S707/99936Y10S707/99942
    • A system and method for generating staged mixture model(s) is provided. The staged mixture model includes a plurality of mixture components each having an associated mixture weight, and, an added mixture component having an initial structure, parameters and associated mixture weight. The added mixture component is modified based, at least in part, upon a case that is undesirably addressed by the plurality of mixture components using a structural expectation maximization (SEM) algorithm to modify at the structure, parameters and/or associated mixture weight of the added mixture component.The staged mixture model employs a data-driven staged mixture modeling technique, for example, for building density, regression, and classification model(s). The basic approach is to add mixture component(s) (e.g., sequentially) to the staged mixture model using an SEM algorithm.
    • 提供了一种用于生成分段混合模型的系统和方法。 分级混合物模型包括各自具有相关混合物重量的多种混合物组分,以及具有初始结构,参数和相关混合物重量的添加的混合物组分。 至少部分地,添加的混合物组分基于使用结构期望最大化(SEM)算法不期望地由多个混合物组分解决的情况进行修饰,以在结构,参数和/或相关联的混合物重量 加入的混合物组分。 分级混合模型采用数据驱动的分段混合建模技术,例如建筑密度,回归和分类模型。 基本方法是使用SEM算法将混合物组分(例如,顺序地)添加到分级混合物模型中。
    • 93. 发明授权
    • Anomaly detection in data perspectives
    • 数据透视异常检测
    • US07065534B2
    • 2006-06-20
    • US10874956
    • 2004-06-23
    • Allan FoltingBo ThiessonDavid E. HeckermanDavid M. ChickeringEric Barber Vigesaa
    • Allan FoltingBo ThiessonDavid E. HeckermanDavid M. ChickeringEric Barber Vigesaa
    • G06F7/00G06F17/00
    • G06F17/30592G06N7/00Y10S707/957Y10S707/958Y10S707/99943
    • The present invention leverages curve fitting data techniques to provide automatic detection of data anomalies in a “data tube” from a data perspective, allowing, for example, detection of data anomalies such as on-screen, drill down, and drill across data anomalies in, for example, pivot tables and/or OLAP cubes. It determines if data substantially deviates from a predicted value established by a curve fitting process such as, for example, a piece-wise linear function applied to the data tube. A threshold value can also be employed by the present invention to facilitate in determining a degree of deviation necessary before a data value is considered anomalous. The threshold value can be supplied dynamically and/or statically by a system and/or a user via a user interface. Additionally, the present invention provides an indication to a user of the type and location of a detected anomaly from a top level data perspective.
    • 本发明利用曲线拟合数据技术从数据角度提供“数据管”中的数据异常的自动检测,从而允许例如检测诸如屏幕上的数据异常,向下钻取和钻取数据异常的数据异常 例如,枢轴表和/或OLAP多维数据集。 它确定数据是否基本上偏离由曲线拟合处理(例如应用于数据管的分段线性函数)所建立的预测值。 本发明也可以采用阈值,以便在确定数据值被认为是异常之前确定所需的偏差程度。 阈值可以由系统和/或用户经由用户界面动态地和/或静态地提供。 另外,本发明从顶级数据的角度向用户提供了检测到的异常的类型和位置的指示。
    • 96. 发明授权
    • Noise reduction for a cluster-based approach for targeted item delivery with inventory management
    • 基于群集的方法进行降噪,用于通过库存管理进行目标物品交付
    • US06665653B1
    • 2003-12-16
    • US09565583
    • 2000-05-04
    • David E. HeckermanD. Maxwell Chickering
    • David E. HeckermanD. Maxwell Chickering
    • G06N504
    • G06Q30/02
    • Reduction of noise within a cluster-based approach for item (such as ad) allocation, such as by using a linear program, is described. In one embodiment, probabilities are discretized into a predetermined number of groups, where the mean for the group that a particular probability has been discretized into is substituted for the particular probability when the items are being allocated. In another embodiment, the probabilities are decreased by a power function of the variances for them. In a third embodiment, allocation of items to clusters is not changed unless the sample sizes used to determine the corresponding probabilities for those ads is greater than a threshold. In a fourth embodiment, after allocation is performed a first time, a predetermined number of item are removed, and reallocation is performed.
    • 描述了基于群集的方法中的项目(例如广告)分配(例如通过使用线性程序)来减少噪声。 在一个实施例中,将概率离散为预定数量的组,其中特定概率已被离散化的组的均值代替项目被分配时的特定概率。 在另一个实施例中,通过它们的方差的幂函数来降低概率。 在第三实施例中,除了用于确定这些广告的相应概率的样本大小大于阈值之外,项目到群集的分配也不会改变。 在第四实施例中,在首次执行分配之后,去除预定数量的项目,并且执行重新分配。
    • 97. 发明授权
    • Visualization of high-dimensional data
    • 高维数据的可视化
    • US06519599B1
    • 2003-02-11
    • US09517138
    • 2000-03-02
    • D. Maxwell ChickeringDavid E. HeckermanChristopher A. MeekRobert L. RounthwaiteAmir NetzThierry D'Hers
    • D. Maxwell ChickeringDavid E. HeckermanChristopher A. MeekRobert L. RounthwaiteAmir NetzThierry D'Hers
    • G06F1730
    • G06F17/30994Y10S707/99945
    • Visualization of high-dimensional data sets is disclosed, particularly the display of a network model for a data set. The network, such as a dependency or a Bayesian network, has a number of nodes having dependencies thereamong. The network can be displayed items and connections, corresponding to nodes and dependencies, respectively. Selection of a particular item in one embodiment results in the display of the local distribution associated with the node for the item. In one embodiment, only a predetermined number of the items are shown, such as only the items representing the most popular nodes. Furthermore, in one embodiment, in response to receiving a user input, a sub-set of the connections is displayed, proportional to the user input. In another embodiment, a particular item is displayed in an emphasized manner, and the particular connections representing dependencies including the node represented by the particular item, as well as the items representing nodes also in these dependencies, are also displayed in the emphasized manner. Furthermore, in one embodiment, only an indicated sub-set of the items is displayed.
    • 公开了高维数据集的可视化,特别是显示数据集的网络模型。 诸如依赖关系或贝叶斯网络的网络具有多个具有依赖关系的节点。 网络可以分别显示对应于节点和依赖关系的项目和连接。 在一个实施例中,特定项目的选择导致与项目的节点相关联的本地分布的显示。 在一个实施例中,仅显示预定数量的项目,诸如仅表示最受欢迎节点的项目。 此外,在一个实施例中,响应于接收到用户输入,显示与用户输入成比例的连接的子集。 在另一个实施例中,以强调方式显示特定项目,并且还以强调的方式显示表示依赖性的特定连接,包括由特定项目表示的节点以及表示节点的项目也在这些依赖关系中。 此外,在一个实施例中,仅显示所指示的项目子集。