会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 91. 发明申请
    • SELF-ALIGNED LATERAL HETEROJUNCTION BIPOLAR TRANSISTOR
    • 自对准侧向异相双极晶体管
    • US20050101096A1
    • 2005-05-12
    • US10703284
    • 2003-11-06
    • Jian LiLap ChanPurakh VermaJia ZhengShao-Fu Chu
    • Jian LiLap ChanPurakh VermaJia ZhengShao-Fu Chu
    • H01L21/331H01L29/737H01L21/8222
    • H01L29/66242H01L29/737
    • A method for manufacturing a lateral heterojunction bipolar transistor (HBT) is provided comprising a semiconductor substrate having a first insulating layer over the semiconductor substrate. A base trench is formed in a first silicon layer over the first insulating layer to form a collector layer over an exposed portion of the semiconductor substrate and an emitter layer over the first insulating layer. A semiconductive layer is formed on the sidewalls of the base trench to form a collector structure in contact with the collector layer and an emitter structure in contact with the emitter layer. A base structure is formed in the base trench. A plurality of connections is formed through an interlevel dielectric layer to the collector layer, the emitter layer, and the base structure. The base structure preferably is a compound semiconductive material of silicon and at least one of silicon-germanium, silicon-germanium-carbon, and combinations thereof.
    • 提供一种用于制造横向异质结双极晶体管(HBT)的方法,包括半导体衬底上的第一绝缘层的半导体衬底。 基底沟槽形成在第一绝缘层上的第一硅层中,以在半导体衬底的暴露部分和第一绝缘层上的发射极层之上形成集电极层。 半导体层形成在基底沟槽的侧壁上,以形成与集电极层接触的集电极结构和与发射极层接触的发射极结构。 基底结构形成在基底沟槽中。 通过层间电介质层到集电极层,发射极层和基底结构形成多个连接。 基底结构优选是硅的化合物半导体材料和硅 - 锗,硅 - 锗 - 碳及其组合中的至少一种。
    • 93. 发明授权
    • Multimode output stage converting differential to single-ended signals using current-mode input signals
    • 多模输出级使用电流模式输入信号将差分转换为单端信号
    • US06806771B1
    • 2004-10-19
    • US10159681
    • 2002-05-31
    • Paul HildebrantJian LiHans W. Klein
    • Paul HildebrantJian LiHans W. Klein
    • H03G310
    • H03F3/45475H03F1/3211H03F3/3022H03F3/45183H03F3/45748H03F3/45973H03F2200/261H03F2200/78H03F2203/45458H03F2203/45526H03G3/001
    • An output block for an in-system programmable analog integrated circuit. The output block features an output amplifier that accepts a differential current-mode input signal and provides a single-ended output voltage. The output amplifier is also selectably operable as a linear amplifier, an integrator or a comparator. The output block also includes a common-mode feedback circuit (CMFB), an analog trim circuit (OATRM), a CLAMP circuit, and an offset calibration circuit (CLDAC), all coupled to the differential input of the output amplifier. The CMFB exhibits bandwidth comparable to that of the output amplifier and a drive capability that enables the differential-input to single-ended output conversion. The CLAMP is connected to the differential input in the comparator mode in order to avoid slow recovery from an overdrive condition. The OATRM forces a difference current into the differential input that compensates for a (gain independent) offset voltage that results from various mismatches. The CLDAC uses a digital-to-analog converter (DAC) to perform offset calibration at the differential input of the output amplifier. In addition, the output block is configured to be operational in a number of user-selectable modes, including, in one embodiment, one or more of: a linear (NORM) mode, a comparator (COMP) mode, and an integrator (INT) mode. An amplifier in the output block is variously reconfigured to achieve the selected mode of operation. Also, the output block accommodates an autocalibration (CAL) technique by clamping the single-ended output stage and balancing, through operation of the CLDAC, signals at an input node and at an interstage node of the amplifier.
    • 用于在系统可编程模拟集成电路的输出块。 输出模块具有输出放大器,可接受差分电流模式输入信号,并提供单端输出电压。 输出放大器也可选择可操作为线性放大器,积分器或比较器。 输出块还包括共模反馈电路(CMFB),模拟微调电路(OATRM),钳位电路和偏移校准电路(CLDAC),全部耦合到输出放大器的差分输入。 CMFB具有与输出放大器的带宽相当的带宽,以及使差分输入能够实现单端输出转换的驱动能力。 CLAMP在比较器模式下连接到差分输入,以避免从过驱动条件恢复缓慢。 OATRM将差分电流强制为差分输入,补偿由各种不匹配产生的(增益无关)偏移电压。 CLDAC使用数模转换器(DAC)在输出放大器的差分输入端执行偏移校准。 此外,输出块被配置为可在多个用户可选模式下操作,包括在一个实施例中,一个或多个:线性(NORM)模式,比较器(COMP)模式和积分器(INT )模式。 输出块中的放大器被不同地重新配置以实现所选择的操作模式。 此外,输出块通过钳位单端输出级并通过CLDAC的操作在放大器的输入节点和级间节点处的信号进行平衡来适应自动校准(CAL)技术。
    • 100. 发明授权
    • Self-aligned process for capping copper lines
    • 自动对线加工铜线
    • US5310602A
    • 1994-05-10
    • US960627
    • 1992-10-13
    • Jian LiJames W. MayerEvan G. ColganJeffrey P. Gambino
    • Jian LiJames W. MayerEvan G. ColganJeffrey P. Gambino
    • H01L21/768H01L23/532B32B9/00
    • H01L21/76858H01L21/76838H01L21/76852H01L21/76856H01L21/76867H01L21/76886H01L23/53233H01L23/53238H01L2924/0002Y10T428/238Y10T428/239Y10T428/24917
    • The present invention features a process and a resulting article in which copper-based multilevel interconnects are fabricated. The copper-based multilevel interconnect formed by the inventive process first includes the process step of depositing a pattern of copper lines upon or in an applicable substrate, such as silicon dioxide. The copper lines are approximately one micron thick. The lines are coated with approximately 50 to 100 nm of titanium by sputter deposition, and undergo subsequent annealing at approximately 300.degree. C. to 400.degree. C. in an argon ambient. The titanium and copper layers are annealed to provide a Cu.sub.3 Ti alloy at the copper/titanium junction. The unreacted titanium between the copper features is then stripped away by dry etching with fluorine-based etch. The remaining Cu.sub.3 Ti alloy is subsequently transformed into TiN(O) and copper by a rapid thermal annealing in an NH.sub.3 atmosphere at an approximate temperature of below 650.degree. C., and then usually at temperatures ranging from between 550.degree. C. to 650.degree. C. for approximately five minutes. The copper lines are thereby capped with a layer of TiN(O), since oxygen is incorporated into the TiN layer during the heat treatment. The TiN(O) layer is more effective as a diffusion barrier than is TiN.
    • 本发明的特征在于制造铜基多层互连的工艺和所得到的制品。 由本发明的方法形成的基于铜的多层互连首先包括将铜线图案沉积在诸如二氧化硅之类的适用基底上或其中的工艺步骤。 铜线约为1微米厚。 线通过溅射沉积涂覆有约50至100nm的钛,并在氩气氛围中在约300℃至400℃下进行随后的退火。 对钛和铜层进行退火以在铜/钛结处提供Cu 3 Ti合金。 然后通过用氟基蚀刻的干蚀刻剥离铜特征之间的未反应的钛。 剩余的Cu3Ti合金随后在NH3气氛中在大约650℃左右的快速热退火下转化成TiN(O)和铜,然后通常在550℃至650℃的温度范围内 约五分钟。 因此,铜线由TiN(O)层覆盖,因为在热处理期间氧被并入到TiN层中。 作为扩散阻挡层,TiN(O)层比TiN更有效。