会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 95. 发明申请
    • HIGH-DENSITY SPLIT-GATE FINFET
    • 高密度分离栅FINFET
    • US20050073005A1
    • 2005-04-07
    • US10605544
    • 2003-10-07
    • Edward NowakBethAnn Rainey
    • Edward NowakBethAnn Rainey
    • H01L21/336H01L21/84H01L27/12H01L29/786H01L27/01
    • H01L29/785H01L21/84H01L27/1203H01L29/66795
    • Disclosed is a method and structure for forming a split-gate fin-type field effect transistor (FinFET). The invention produces a split-gate fin-type field effect transistor (FinFET) that has parallel fin structures. Each of the fin structures has a source region at one end, a drain region at the other end, and a channel region in the middle portion. Back gate conductors are positioned between channel regions of alternating pairs of the fin structures and front gate conductors are positioned between channel regions of opposite alternating pairs of the fin structures. Thus, the back gate conductors and the front gate conductors are alternatively inter-digitated between channel regions of the fin structures.
    • 公开了用于形成分裂栅极鳍型场效应晶体管(FinFET)的方法和结构。 本发明产生具有平行翅片结构的分裂栅极鳍型场效应晶体管(FinFET)。 每个翅片结构的一端具有源极区域,另一端处的漏极区域和中间部分中的沟道区域。 背栅导体定位在翅片结构的交替对的通道区域之间,并且前栅极导体位于翅片结构的相对交替对的通道区域之间。 因此,背栅极导体和前栅极导体在散热片结构的沟道区域之间被交替地数位化。
    • 99. 发明申请
    • SCHOTTKY BARRIER DIODE AND METHOD OF FORMING A SCHOTTKY BARRIER DIODE
    • 肖特基阻挡二极管和形成肖特基二极管二极管的方法
    • US20070184594A1
    • 2007-08-09
    • US11736599
    • 2007-04-18
    • Edward Nowak
    • Edward Nowak
    • H01L21/338
    • H01L29/872H01L29/66143
    • Disclosed is a silicon-on-insulator-based Schottky barrier diode with a low forward voltage that can be manufactured according to standard SOI process flow. An active silicon island is formed using an SOI wafer. One area of the island is heavily-doped with an n-type or p-type dopant, one area is lightly-doped with the same dopant, and an isolation structure is formed on the top surface above a junction between the two areas. A metal silicide region contacts the lightly-doped side of the island forming a Schottky barrier. Another discrete metal silicide region contacts the heavily-doped area of the island forming an electrode to the Schottky barrier (i.e., a Schottky barrier contact). The two metal silicide regions are isolated from each other by the isolation structure. Contacts to each of the discrete metal silicide regions allow a forward and/or a reverse bias to be applied to the Schottky barrier.
    • 公开了可以根据标准SOI工艺流程制造的具有低正向电压的基于硅绝缘体的肖特基势垒二极管。 使用SOI晶片形成活性硅岛。 该岛的一个区域被n型或p型掺杂物重掺杂,一个区域用相同的掺杂剂轻掺杂,并且在两个区域之间的结点上方的顶表面上形成隔离结构。 金属硅化物区域接触形成肖特基势垒的岛的轻掺杂侧。 另一个分立的金属硅化物区域接触形成与肖特基势垒(即,肖特基势垒接触)的电极的岛的重掺杂区域。 两个金属硅化物区域通过隔离结构彼此隔离。 与离散的金属硅化物区域中的每一个的接触允许将正向和/或反向偏压施加到肖特基势垒。
    • 100. 发明申请
    • COMPLEMENTARY CARBON NANOTUBE TRIPLE GATE TECHNOLOGY
    • 补充碳纳米管三叶栅技术
    • US20070102747A1
    • 2007-05-10
    • US11164109
    • 2005-11-10
    • Jia ChenEdward Nowak
    • Jia ChenEdward Nowak
    • H01L29/76
    • H01L51/055B82Y10/00H01L27/283H01L51/0048H01L51/0558Y10S977/742Y10S977/94
    • Disclosed is a CNT technology that overcomes the intrinsic ambipolar properties of CNTFETs. One embodiment of the invention provides either a stable p-type CNTFET or a stable n-type CNTFET. Another embodiment of the invention provides a complementary CNT device. In order to overcome the ambipolar properties of a CNTFET, source/drain gates are introduced below the CNT opposite the source/drain electrodes. These source/drain gates are used to apply either a positive or negative voltage to the ends of the CNT so as to configure the corresponding FET as either an n-type or p-type CNTFET, respectively. Two adjacent CNTFETs, configured such that one is an n-type CNTFET and the other is a p-type CNTFET, can be incorporated into a complementary CNT device. In order to independently adjust threshold voltage of an individual CNTFET, a back gate can also be introduced below the CNT and, particularly, below the channel region of the CNT opposite the front gate. In this manner parasitic capacitances and resistances are minimized.
    • 公开了克服CNTFET的固有双极性能的CNT技术。 本发明的一个实施例提供稳定的p型CNTFET或稳定的n型CNTFET。 本发明的另一实施例提供了一种互补的CNT器件。 为了克服CNTFET的双极性质,源极/漏极栅极被引入到与源极/漏极电极相对的CNT之下。 这些源极/漏极栅极用于向CNT的端部施加正或负电压,以将相应的FET分别构造为n型或p型CNTFET。 可以将两个相邻的CNTFET配置成互补CNT器件,其被配置为使得一个是n型CNTFET,另一个是p型CNTFET。 为了独立地调节各个CNTFET的阈值电压,也可以在CNT下面,特别是在与前栅极相对的CNT的沟道区下方引入背栅。 以这种方式,寄生电容和电阻最小化。