会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Encrypted holographic data storage based on orthogonal phase code
multiplexing
    • 基于正交相位码复用的加密全息数据存储
    • US5940514A
    • 1999-08-17
    • US643115
    • 1996-04-30
    • John F. HeanueMatthew C. BashawLambertus Hesselink
    • John F. HeanueMatthew C. BashawLambertus Hesselink
    • G03H1/26H04K1/00
    • H04K1/00G03H1/26G03H2001/0022G03H2001/2675
    • An encryption method and apparatus for holographic data storage are disclosed. In a system using orthogonal phase-code multiplexing, data is encrypted by modulating the reference beam using an encryption key K represented by a unitary operator. In practice, the encryption key K corresponds to a diffuser or other phase-modulating element placed in the reference beam path, or to shuffling the correspondence between the codes of an orthogonal phase function and the corresponding pixels of a phase spatial light modulator. Because of the lack of Bragg selectivity in the vertical direction, the phase functions used for phase-code multiplexing are preferably one dimensional. Such phase functions can be one-dimensional Walsh functions. The encryption method preserves the orthogonality of reference beams, and thus does not lead to a degradation in crosstalk performance.
    • 公开了一种用于全息数据存储的加密方法和装置。 在使用正交相位码复用的系统中,通过使用由单一运算符表示的加密密钥K调制参考波束来加密数据。 实际上,加密密钥K对应于放置在参考光束路径中的扩散器或其他相位调制元件,或者改变正交相位函数的代码与相位空间光调制器的相应像素之间的对应关系。 由于在垂直方向上缺乏布拉格选择性,所以用于相位码复用的相位函数优选地是一维的。 这样的相位函数可以是一维沃尔什函数。 加密方法保留参考光束的正交性,因此不会导致串扰性能下降。
    • 3. 发明授权
    • Method for encoding and decoding digital data in holographic storage
media
    • US5450218A
    • 1995-09-12
    • US286480
    • 1994-08-04
    • John F. HeanueMatthew C. BashawLambertus Hesselink
    • John F. HeanueMatthew C. BashawLambertus Hesselink
    • G03H1/04G11B13/04G02B5/32
    • G03H1/0248G11B13/045
    • A method for encoding and decoding digital data for storage in a holographic medium (12). Digital data, consisting of binary data (B.sub.i) or grey scale data (A.sub.i), is encoded in bit groups or digit groups (B.sub.k, A.sub.k) containing at least k=1 bits or digits, respectively, by assigning to each bit group (B.sub.k) one reference bit (B.sub.r) and to each digit group (A.sub.k) two reference digits (A.sub.r1, A.sub.r2), assigning the bits of group (B.sub.k) to information bits (B.sub.j), assigning the digits of group (A.sub.k) to information digits (A.sub.j), assigning the reference bit (B.sub.r) and information digits (B.sub.j) to a reference pixel (P.sub.r) and information pixels (P.sub.j) chosen from pixels (24) of a holographic signal modulator (18), and assigning the reference digits (A.sub.r1, A.sub.r2) and information digits (A.sub.j) to reference pixels (P.sub.r1, P.sub.r2) and information pixels (P.sub.j) chosen from pixels (24) of the holographic signal modulator (18). Storing all pixels (24) by illuminating the holographic signal modulator (18) with a signal beam (22) which impresses upon the signal beam (29) pixels (24), guiding the signal beam (22) to the holographic medium (12) and storing the pixels (24) by directing a reference beam (26) at the holographic medium (12) from a predetermined angle .beta. and at a predetermined part of the holographic medium (12). Decoding the encoded binary data (B.sub.i) and encoded grey scale data (A.sub.i) by aiming the reference beam (26) at the holographic medium (12) at the same angle .beta. and location as during storage, recovering pixels (24) and recovering from them using a decoding unit (38) reference bits (B.sub.r) and information bits (B.sub.j) for each bit group (B.sub.k), and recovering reference digits (A.sub.r1, A.sub.r2) and information digits (A.sub.j) for each digit group (A.sub.k). Reconstructing the original binary data (B.sub.i) by differentiating the binary values of bits (B.sub.r) and (B.sub.j). Reconstructing the grey scale data (A.sub.i) by differentiating the reference digits (A.sub.r1, A.sub.r2) to obtain a benchmark (D.sub.r) and applying a binary operation on the benchmark (D.sub.r) and each of the information digits (A.sub.j).
    • 4. 发明授权
    • Coded-wavelength multiplex volume holography
    • 编码波长多重体积全息术
    • US6023355A
    • 2000-02-08
    • US643062
    • 1996-04-30
    • Matthew C. BashawJohn F. HeanueLambertus Hesselink
    • Matthew C. BashawJohn F. HeanueLambertus Hesselink
    • G03H1/26G02B5/32G03H1/10G03H1/22G03H1/28
    • G03H1/26G03H2001/2675
    • A method for coded-wavelength multiplexing according to which a signal waves S.sub.i (r) is recorded in a holographic medium in a counter-propagating geometry using corresponding writing reference waves R.sub.i (r). The method involves selecting discrete wavelengths .lambda. and encoding reference wave vectors .rho..sub.l which make up writing reference waves R.sub.i (r) such that the writing reference waves R.sub.i (r) at each wavelength .lambda. are orthogonal. The stored signal waves S.sub.i (r) are reconstructed in the form of reconstruction waves A.sub.c (.sigma.) with reconstruction reference waves R.sub.c (r) selected from among the writing reference waves R.sub.i (r). In the event of angular multiplexing of the reference wave vectors .rho..sub.l, it is possible to use one reference wave to produce a number of reconstruction waves A.sub.c (.sigma.) and generate a mosaic of desired holographic pages.
    • 一种用于编码波长多路复用的方法,根据该方法,信号波Si(r)以相反的传播几何形状使用相应的写入基准波Ri(r)记录在全息介质中。 该方法包括选择离散波长λ和编码参考波矢量rho,其构成写入参考波Ri(r),使得每个波长λ处的写入基准波Ri(r)是正交的。 存储的信号波Si(r)以从写入基准波Ri(r)中选择的重建基准波Rc(r)的重构波Ac(sigma)的形式被重建。 在参考波矢量rho1的角度多路复用的情况下,可以使用一个参考波来产生多个重建波Ac(sigma)并产生期望的全息页的马赛克。
    • 7. 发明授权
    • Differential video image compression in holographic media
    • 全息介质中的差分视频图像压缩
    • US5877873A
    • 1999-03-02
    • US685623
    • 1996-07-24
    • Matthew C. BashawJohn F. HeanueLambertus Hesselink
    • Matthew C. BashawJohn F. HeanueLambertus Hesselink
    • G03H1/10G11B7/0065G11C13/04G03H1/28
    • G03H1/10G11B7/0065G11C13/042G03H2001/2675G03H2210/11G03H2210/12G03H2210/22G03H2260/54
    • A video image F�k! is identified as a basis image and stored as a basis page S�k! in a holographic storage medium. A subsequent image F�k+n! is stored by recording in the medium a page S�k+n!=F�k+n!-a�k!F�k!, where a�k!.noteq.0 and preferably a�k!=1. The page S�k! is recorded with a reference beam R�k!, while S�k+n! is recorded with a reference beam R�k+n! orthogonal to R�k!. The basis page is reset whenever the average intensity of a page to be stored exceeds a predetermined threshold. An image F'�k! is retrieved by reading basis page S�k! and letting F'�k!=S�k!. Subsequent images F'�k+n! are retrieved as S�k+n!+b�k!S�k!, where b�k!.noteq.0 and preferably b�k!=a�k!=1. The page addition step is performed coherently, i.e. by accessing the medium with a reference wave function R�k+n!+b�k!R�k!. The coherent addition is achieved by using a compound phase-and-amplitude modulator in a phase-code-multiplexed system, and by simultaneously accessing the storage medium at two different angles in an angle-multiplexed system. Differential video compression leads to a reduction in interpage crosstalk and to a capacity increase in crosstalk-limited memories. Optical page-by-page addition allows fast readout and eliminates the need for a time-consuming electronic decompression step.
    • 视频图像F [k]被识别为基础图像并作为基本页S [k]存储在全息存储介质中。 通过在介质中记录S [k + n] = F [k + n] -a [k] F [k]来存储后续图像F [k + n],其中a [k] a [k] = 1。 以参考光束R [k]记录页S [k],而用与R [k]正交的参考光束R [k + n]记录S [k + n]。 每当要存储的页面的平均强度超过预定阈值时,基页被重置。 通过读取基本页S [k]并使F'[k] = S [k]来检索图像F'[k]。 随后的图像F'[k + n]被检索为S [k + n] + b [k] S [k],其中b [k] NOTEQUAL 0并且优选地b [k] = a [k] = 1。 相干地执行页面添加步骤,即通过访问具有参考波函数R [k + n] + b [k] R [k]的介质。 通过在相位码复用系统中使用复合相位和幅度调制器,并且在角度多路复用系统中以两个不同的角度同时访问存储介质来实现相干相加。 差分视频压缩导致分组串扰的减少和串扰限制存储器的容量增加。 光学逐页添加允许快速读出,并且不需要耗时的电子减压步骤。
    • 10. 发明授权
    • Semiconductor laser and associated drive circuit substrate
    • 半导体激光器及相关驱动电路基板
    • US06937637B1
    • 2005-08-30
    • US10441429
    • 2003-05-19
    • Robert L. ThorntonDouglas G. StinsonRoger K. MalmhallMatthew C. Bashaw
    • Robert L. ThorntonDouglas G. StinsonRoger K. MalmhallMatthew C. Bashaw
    • G11B7/12G11B7/22H01S5/02H01S5/026H01S5/042H01S5/183H01S3/081
    • H01S5/18391G11B7/122G11B7/22H01S5/02276H01S5/02284H01S5/0261H01S5/0425H01S5/18311H01S5/18369H01S5/18375H01S5/18377H01S2301/166
    • A near-field optical system having one or more solid state lasers and an aerodynamically shaped slider which comprise a single integrated, monolithic device fabricated from the same base semiconductor material. The monolithic optical head can be quickly and easily attached to the read arm of an optical read/write device without requiring attachment of separate laser elements, and without micropositioning or use of optical microscopy for positioning the lasers. The optical head comprising a single semiconductor substrate including a first region which defines a slider having an air bearing surface, and at least one second, laser region which defines a diode laser, with the diode laser having an emission face which is substantially co-planar with the air bearing surface. A slider region of the semiconductor substrate includes an air bearing surface, adjacent the p-clad layer, which is aerodynamically structured and configured to define a slider. The integral lasers include a p-electrical contact and an n-electrical contact which are electrically accessible from one side of the laser, which allows the laser to be used directly with a drive circuit substrate.
    • 具有一个或多个固态激光器和空气动力学形状的滑块的近场光学系统,其包括由相同的基底半导体材料制造的单个集成的单片器件。 单片光学头可以快速且容易地附接到光学读/写设备的读取臂,而不需要附加单独的激光元件,并且不需要定位微距定位或使用光学显微镜来定位激光器。 该光学头包括单个半导体衬底,该半导体衬底包括限定具有空气支承表面的滑块的第一区域和限定二极管激光器的至少一个第二激光区域,二极管激光器具有基本共面的发射面 与空气轴承表面。 半导体衬底的滑块区域包括邻近p覆盖层的空气支承表面,其空气动力学构造并构造成限定滑块。 整体激光器包括可从激光器的一侧电接触的p电接触和n电接触,这允许激光器直接与驱动电路基板一起使用。