会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and system for laser based communication
    • 基于激光的通信方法与系统
    • US08213803B2
    • 2012-07-03
    • US12128857
    • 2008-05-29
    • Yeong-wei A. WuKetao Liu
    • Yeong-wei A. WuKetao Liu
    • H04B10/00
    • H04B10/118
    • Method and system for determining a point-ahead angle from a first spacecraft to a second spacecraft, each spacecraft having a laser communication (“lasercom”) terminal is provided If ephemeris data regarding the second spacecraft is unavailable to the first spacecraft while the second spacecraft is mobile, (a) obtaining attitude information regarding the first spacecraft; and (b) obtaining gimbal offload commands from a fast steering mirror and a first spacecraft telescope subsystem of the first spacecraft; wherein a point-ahead determination module receives the attitude information and the gimbal offload commands; and determining an estimate of the point-ahead angle from the first spacecraft to the second spacecraft based on the attitude information and the gimbal offload commands.
    • 用于确定从第一航天器到第二航天器的点前进角度的方法和系统,提供具有激光通信(“激光通信”)终端的每个航天器如果关于第二航天器的星历数据对于第一航天器是不可用的,而第二航天器 是移动的,(a)获得关于第一航天器的态度信息; 和(b)从第一航天器的快速转向镜和第一航天器望远镜子系统获得万向节卸载命令; 其中,提前确定模块接收姿态信息和万向节卸载命令; 以及基于姿态信息和万向节卸载命令确定从第一航天器到第二航天器的点前进角度的估计。
    • 2. 发明授权
    • Precision spacecraft payload platforms
    • 精密航天器有效负载平台
    • US07547870B2
    • 2009-06-16
    • US11400874
    • 2006-04-10
    • Ketao LiuGregory S. BeckerPeter J. SedivecDouglas Bender
    • Ketao LiuGregory S. BeckerPeter J. SedivecDouglas Bender
    • G01C21/02G01N21/86G01B11/26B64G1/36
    • G01S5/163G01B11/272
    • One or more fixed-orientation fanned laser beams and one or more displacement measurement devices to precisely measure the orientation of a payload platform are disclosed in a metrology system and method. The measurement devices may be distributed at locations across a payload platform such that displacement changes of these devices can be used to accurately determine platform pointing. Laser beam transmitters may be fixed in the same reference block to which a spacecraft attitude sensor is mounted. Fanned laser beams are transmitted from these sources to the measurement devices so that their displacements can be determined with respect to the plane of the fanned beams and thereby with respect to the spacecraft attitude sensor. Only a small number of fixed laser beams are needed to achieve precision measurements at a reduced cost, weight and power, and with increased system reliability and simplified system integration.
    • 计量系统和方法中公开了一种或多种固定方向的扇形激光束和一个或多个位移测量装置来精确地测量有效负载平台的取向。 测量设备可以分布在有效负载平台上的位置,使得这些设备的位移变化可以用于准确地确定平台指向。 激光束发射器可以固定在安装有航天器姿态传感器的相同参考块中。 扇形激光束从这些源传输到测量装置,使得它们的位移可以相对于扇形光束的平面,从而相对于航天器姿态传感器确定。 只需要少量的固定激光束,以降低成本,重量和功率,以及更高的系统可靠性和简化的系统集成来实现精密测量。
    • 3. 发明申请
    • Thermal deformation determination for payload pointing using space-based beacon
    • 使用基于空间的信标的有效载荷指向的热变形确定
    • US20060054745A1
    • 2006-03-16
    • US10929844
    • 2004-08-30
    • Leonard PlotkeKetao Liu
    • Leonard PlotkeKetao Liu
    • B64G1/36
    • B64G1/24B64G1/36
    • A system and associated method for compensating for thermal deformation of a spaced-based structure having a spacecraft payload. The system including a beacon source coupled to a first spacecraft for transmitting a first signal and a beacon sensor coupled to a second spacecraft for receiving the first signal and providing measurement data derived from the first signal. At least one attitude sensing device is coupled to the second spacecraft for determining estimated spacecraft attitude data for the second spacecraft. A processor on the second spacecraft is configured to process ephemeris data of the first and second spacecraft, beacon measurement data, estimated spacecraft attitude data, and gimbal angular position data to estimate spacecraft structural deformation.
    • 一种用于补偿具有航天器有效载荷的基于间隔的结构的热变形的系统和相关方法。 该系统包括耦合到第一航天器的用于发射第一信号的信标源和耦合到第二航天器的信标传感器,用于接收第一信号并提供从第一信号导出的测量数据。 至少一个姿态感测装置耦合到第二航天器,用于确定第二航天器的估计的航天器姿态数据。 第二航天器上的处理器被配置为处理第一和第二航天器的星历数据,信标测量数据,估计的航天器姿态数据和万向角位置数据以估计航天器结构变形。
    • 5. 发明授权
    • Phased array pointing determination using inverse pseudo-beacon
    • 使用反伪信标的相控阵指向确定
    • US06771217B1
    • 2004-08-03
    • US10371141
    • 2003-02-20
    • Ketao LiuPaul C. Werntz
    • Ketao LiuPaul C. Werntz
    • H01Q322
    • H01Q3/267
    • A method and apparatus for determining and correcting for phased array mispointing errors, particularly those due to structural deformation, is disclosed. The method comprises the steps of receiving a signal from each of a plurality of signal sources at at least one receiving sensor disposed away from the phased array in a direction at least partially toward a receiver of a transmitted signal from the phased array, and determining the phased array pointing from the received signals. The apparatus comprises a receiving sensor for receiving a signal from each of a plurality of signal sources, the receiving sensor disposed away from the phased array in a direction at least partially toward a receiver of a transmitted signal from the phased array, and an array pointing computer for determining the direction of the phased array from the received signals.
    • 公开了一种用于确定和校正相控阵错误点错误的方法和装置,特别是由于结构变形而引起的误列。 该方法包括以下步骤:从至少一个接收传感器接收来自多个信号源中的每一个的信号,所述至少一个接收传感器至少部分地朝向相控阵列的发射信号的接收器方向远离相控阵列,并且确定 相控阵从指示的接收信号。 该装置包括接收传感器,用于接收来自多个信号源中的每一个的信号,接收传感器远离相控阵列,至少部分地朝向从相控阵列传输的信号的接收器的方向布置,并且阵列指向 计算机,用于根据接收到的信号确定相控阵列的方向。
    • 8. 发明申请
    • METHOD AND SYSTEM FOR LASER BASED COMMUNICATION
    • 用于激光通信的方法和系统
    • US20090324236A1
    • 2009-12-31
    • US12128857
    • 2008-05-29
    • Yeong-wei A. WuKetao Liu
    • Yeong-wei A. WuKetao Liu
    • H04B10/00
    • H04B10/118
    • Method and system for determining a point-ahead angle from a first spacecraft to a second spacecraft, each spacecraft having a laser communication (“lasercom”) terminal is provided If ephemeris data regarding the second spacecraft is unavailable to the first spacecraft while the second spacecraft is mobile, (a) obtaining attitude information regarding the first spacecraft; and (b) obtaining gimbal offload commands from a fast steering mirror and a first spacecraft telescope subsystem of the first spacecraft; wherein a point-ahead determination module receives the attitude information and the gimbal offload commands; and determining an estimate of the point-ahead angle from the first spacecraft to the second spacecraft based on the attitude information and the gimbal offload commands.
    • 用于确定从第一航天器到第二航天器的点前进角度的方法和系统,提供具有激光通信(“激光通信”)终端的每个航天器如果关于第二航天器的星历数据对于第一航天器是不可用的,而第二航天器 是移动的,(a)获得关于第一航天器的态度信息; 和(b)从第一航天器的快速转向镜和第一航天器望远镜子系统获得万向节卸载命令; 其中,提前确定模块接收姿态信息和万向节卸载命令; 以及基于姿态信息和万向节卸载命令确定从第一航天器到第二航天器的点前进角度的估计。
    • 10. 发明授权
    • Solar wing thermal shock compensation using solar wing position actuator
    • 太阳翼热震补偿使用太阳能机翼位置执行器
    • US06318675B1
    • 2001-11-20
    • US09416157
    • 1999-10-11
    • Ketao Liu
    • Ketao Liu
    • B64G124
    • B64G1/407B64G1/24B64G1/283B64G1/288B64G1/361B64G1/363B64G1/366B64G1/38B64G1/443
    • A method, apparatus, article of manufacture for compensating for solar wing thermal shock in a spacecraft. The method comprises the steps of determining solar wing compensation to compensate for the thermal shock disturbance and rotating the solar wing about a second axis according to the determined compensation, wherein the second axis is substantially perpendicular to the first axis and to a vector from the spacecraft to the sun. The solar wing compensation can be based on predicted solar wing deflections due to thermal shock perturbations, or if available, solar wing temperature measurements. In an embodiment of the present invention applicable to satellites with multiple solar wings, asymmetric control is applied by independent adjustment of the thermal shock compensation loop controlling each solar wing. In yet another embodiment of the present invention, the solar wing position actuator is further commanded by a feedback control loop using the measured spacecraft attitude. The apparatus comprises an attitude control system having a device for predicting or measuring solar wing perturbations, at least one solar wing position actuator, cooperatively coupled to the solar wing for rotating the solar wing about a second axis, wherein the second axis is substantially perpendicular to the first axis and to a vector from the spacecraft to the sun, and a thermal shock compensation loop, for generating at least one solar wing position actuator command to rotate the solar wing about the second axis in accordance with the predicted or measured solar wing perturbations.
    • 一种用于补偿航天器中的太阳能机翼热冲击的方法,装置,制品。 该方法包括以下步骤:确定太阳翼补偿以补偿热冲击扰动并根据所确定的补偿使太阳能翼围绕第二轴旋转,其中第二轴基本上垂直于第一轴线和与航天器的矢量 向太阳。 太阳翼补偿可以基于由于热冲击扰动或者如果可用的太阳翼温度测量而预测的太阳翼偏转。 在适用于具有多个太阳能翼的卫星的本发明的实施例中,通过独立调整控制每个太阳能翼的热冲击补偿环来应用不对称控制。 在本发明的另一个实施例中,太阳能翼位置致动器进一步由使用测量的航天器姿态的反馈控制回路命令。 该装置包括姿态控制系统,其具有用于预测或测量太阳能翼片扰动的装置,至少一个太阳能翼位置致动器,协作地联接到太阳翼,用于围绕第二轴线旋转太阳能翼,其中第二轴线基本上垂直于 第一轴线和从航天器到太阳的矢量和热冲击补偿回路,用于产生至少一个太阳能翼位置致动器命令,以根据预测或测量的太阳翼扰动使太阳能翼绕第二轴线旋转 。