会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • 4H-POLYTYPE GALLIUM NITRIDE-BASED SEMICONDUCTOR DEVICE ON A 4H-POLYTYPE SUBSTRATE
    • 4H-多晶型氮化镓基半导体器件在4H-多晶基片上
    • US20090261362A1
    • 2009-10-22
    • US12496271
    • 2009-07-01
    • Tetsuzo UEDATsunenobu KimotoHiroyuki MatsunamiJun SudaNorio Onojima
    • Tetsuzo UEDATsunenobu KimotoHiroyuki MatsunamiJun SudaNorio Onojima
    • H01L33/00
    • H01L21/02082H01L21/02378H01L21/02433H01L21/02458H01L21/0254H01L21/0262H01L21/02639H01L21/0265H01L33/18H01L33/32
    • 4H—InGaAlN alloy based optoelectronic and electronic devices on non-polar face are formed on 4H—AlN or 4H—AlGaN on (11-20) a-face 4H—SiC substrates. Typically, non polar 4H—AlN is grown on 4H—SiC (11-20) by molecular beam epitaxy (MBE). Subsequently, III-V nitride device layers are grown by metal organic chemical vapor deposition (MOCVD) with 4H-polytype for all of the layers. The non-polar device does not contain any built-in electric field due to the spontaneous and piezoelectric polarization. The optoelectronic devices on the non-polar face exhibits higher emission efficiency with shorter emission wavelength because the electrons and holes are not spatially separated in the quantum well. Vertical device configuration for lasers and light emitting diodes (LEDs) using conductive 4H—AlGaN interlayer on conductive 4H—SiC substrates makes the chip size and series resistance smaller. The elimination of such electric field also improves the performance of high speed and high power transistors. The details of the epitaxial growth s and the processing procedures for the non-polar III-V nitride devices on the non-polar SiC substrates are also disclosed.
    • 在(11-20)a面4H-SiC衬底上的4H-AlN或4H-AlGaN上形成4H-InGaAlN合金基非极性面上的光电子和电子器件。 通常,非极性4H-AlN通过分子束外延(MBE)在4H-SiC(11-20)上生长。 随后,通过用于所有层的4H-多型金属有机化学气相沉积(MOCVD)生长III-V族氮化物器件层。 由于自发和压电极化,非极性器件不包含任何内置的电场。 由于电子和空穴在量子阱中没有空间分离,非极性面上的光电器件表现出较短的发射波长的发射效率。 在导电4H-SiC衬底上使用导电4H-AlGaN夹层的激光器和发光二极管(LED)的垂直器件配置使芯片尺寸和串联电阻更小。 这种电场的消除也提高了高速和高功率晶体管的性能。 还公开了非极性SiC衬底上的非极性III-V族氮化物器件的外延生长细节和处理步骤。
    • 6. 发明申请
    • Method of growing semiconductor crystal
    • 生长半导体晶体的方法
    • US20060180077A1
    • 2006-08-17
    • US10549683
    • 2004-03-18
    • Jun SudaHiroyuki MatsunamiNorio Onojima
    • Jun SudaHiroyuki MatsunamiNorio Onojima
    • C30B23/00C30B25/00C30B28/12C30B28/14
    • C30B29/406C30B23/002C30B29/403H01L21/02378H01L21/02458H01L21/0254H01L21/02631H01L21/02658H01L21/02661
    • SiC is a very stable substance, and it is difficult to control the condition of a SiC surface to be suitable for crystal growth in conventional Group III nitride crystal growing apparatuses. This problem is solved as follows. The surface of a SiC substrate 1 is rendered into a step-terrace structure by performing a heating process in an atmosphere of HCl gas. The surface of the SiC substrate 1 is then treated sequentially with aqua regia, hydrochloric acid, and hydrofluoric acid. A small amount of silicon oxide film formed on the surface of the SiC substrate 1 is etched so as to form a clean SiC surface 3 on the substrate surface. The SiC substrate 1 is then installed in a high-vacuum apparatus and the pressure inside is maintained at ultrahigh vacuum (such as 10−6 to 10−8 Pa). In the ultrahigh vacuum state, a process of irradiating the surface with a Ga atomic beam 5 at time t1 at temperature of 800° C. or lower and performing a heating treatment at 800° C. or higher is repeated at least once. The temperature is then set to the growth temperature of an AlN film, and the SiC substrate surface 3 is initially irradiated with —Al atoms 8a in ultrahigh vacuum state, followed by the feeding of N atoms 8b.
    • SiC是非常稳定的物质,在传统的III族氮化物晶体生长装置中难以控制SiC表面适合于晶体生长的状态。 这个问题解决如下。 通过在HCl气体气氛中进行加热处理,将SiC衬底1的表面制成台阶平台结构。 然后依次用王水,盐酸和氢氟酸处理SiC衬底1的表面。 蚀刻形成在SiC衬底1的表面上的少量氧化硅膜,从而在衬底表面上形成清洁的SiC表面3。 然后将SiC基板1安装在高真空装置中,并且内部的压力保持在超高真空(例如10 -6至10 -8 Pa)。 在超高真空状态下,在800℃以下的温度下,在时刻t 1的Ga原子束5照射表面,进行800℃以上的加热处理,至少重复一次。 然后将温度设定为AlN膜的生长温度,并且首先用超高真空状态的-Al原子8a照射SiC衬底表面3,然后馈送N原子8b。
    • 7. 发明授权
    • Method of growing semiconductor crystal
    • 生长半导体晶体的方法
    • US07625447B2
    • 2009-12-01
    • US10549683
    • 2004-03-18
    • Jun SudaHiroyuki MatsunamiNorio Onojima
    • Jun SudaHiroyuki MatsunamiNorio Onojima
    • C30B23/00
    • C30B29/406C30B23/002C30B29/403H01L21/02378H01L21/02458H01L21/0254H01L21/02631H01L21/02658H01L21/02661
    • SiC is a very stable substance, and it is difficult to control the condition of a SiC surface to be suitable for crystal growth in conventional Group III nitride crystal growing apparatuses. This problem is solved as follows. The surface of a SiC substrate 1 is rendered into a step-terrace structure by performing a heating process in an atmosphere of HCl gas. The surface of the SiC substrate 1 is then treated sequentially with aqua regia, hydrochloric acid, and hydrofluoric acid. A small amount of silicon oxide film formed on the surface of the SiC substrate 1 is etched so as to form a clean SiC surface 3 on the substrate surface. The SiC substrate 1 is then installed in a high-vacuum apparatus and the pressure inside is maintained at ultrahigh vacuum (such as 10−6 to 10−8 Pa). In the ultrahigh vacuum state, a process of irradiating the surface with a Ga atomic beam 5 at time t1 at temperature of 800° C. or lower and performing a heating treatment at 800° C. or higher is repeated at least once. The temperature is then set to the growth temperature of an AlN film, and the SiC substrate surface 3 is initially irradiated with Al atoms 8a in ultrahigh vacuum state, followed by the feeding of N atoms 8b.
    • SiC是非常稳定的物质,在传统的III族氮化物晶体生长装置中难以控制SiC表面适合于晶体生长的状态。 这个问题解决如下。 通过在HCl气体气氛中进行加热处理,将SiC衬底1的表面制成台阶平台结构。 然后依次用王水,盐酸和氢氟酸处理SiC衬底1的表面。 蚀刻形成在SiC衬底1的表面上的少量氧化硅膜,从而在衬底表面上形成清洁的SiC表面3。 然后将SiC基板1安装在高真空装置中,并且内部的压力保持在超高真空(例如10-6至10-8Pa)。 在超高真空状态下,在800℃以下的温度下在时刻t1的Ga原子束5照射表面,进行800℃以上的加热处理的工序至少重复一次。 然后将温度设定为AlN膜的生长温度,并且首先用超高真空状态的Al原子8a照射SiC衬底表面3,然后馈送N原子8b。
    • 10. 发明授权
    • Signal generating circuit, timing recovery PLL, signal generating system and signal generating method
    • 信号发生电路,定时恢复PLL,信号发生系统和信号产生方法
    • US07266170B2
    • 2007-09-04
    • US10114457
    • 2002-04-03
    • Hiroyuki MatsunamiKouji Okada
    • Hiroyuki MatsunamiKouji Okada
    • H03D3/24H03L7/06
    • H03L7/0805H03L7/07H03L7/0891H03L7/091H03L7/0995H03L7/18
    • A control signal that runs a control oscillator of a signal generation circuit that generates a write clock is taken as a reference signal. That reference signal is supplied to a signal generation circuit that generates a read clock. In the signal generation circuit that generates the read clock, there is no need to generate a reference signal within its own circuits, which makes it possible to supply it to a control oscillator by adding the error timing from reading out the signal against the supplied reference signal. In this way, no means for locking the read clock into the initial frequency is needed and neither is the time for locking the read clock to the initial frequency (lock up time). This makes it possible to reduce the size of the circuit and to reduce the signal read-out time.
    • 将产生写时钟的信号发生电路的控制振荡器的控制信号作为参考信号。 该参考信号被提供给产生读时钟的信号产生电路。 在产生读取时钟的信号发生电路中,不需要在其自身的电路内生成参考信号,这使得可以通过将错误定时从相对于所提供的参考值读出信号加到控制振荡器 信号。 以这种方式,不需要将读时钟锁定到初始频率的手段,也不需要将读时钟锁定到初始频率(锁定时间)的时间。 这使得可以减小电路的尺寸并减少信号读出时间。