会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Universal Gripping and Suction Chuck
    • 通用夹具和吸盘卡盘
    • US20170062263A1
    • 2017-03-02
    • US14842003
    • 2015-09-01
    • Boris KesilElik Gershenzon
    • Boris KesilElik Gershenzon
    • H01L21/683B25J15/06H01L21/687B25J13/08H01L21/67B25J15/00B25J9/16
    • H01L21/6838B25J15/0616H01L21/67259H01L21/67294H01L21/68707H01L21/68735
    • Proposed is a universal gripping and suction chuck for use as an interchangeable end effector of a robot arm of a robotic station capable of picking up, transporting, and handling objects having colors and outlines. The chuck housing contains elements of a vacuum system for holding the object by vacuum suction force, a vortex system for holding the objects in a non-contact manner in a state of levitation, and a mechanical edge gripper. The vacuum system, the vortex system, and the mechanical edge gripper can be selectively activated by commands from the central processing system that receives a signal recognition signal, object presence/absence signal and/or object approaching signal from respective sensors and depending on the type of the object recognized by the respective sensor. As a result, the chuck can pick up and handle such different objects as solid semiconductor wafer, paper or fabric interleaves, or small-diameter rings.
    • 提出了一种通用夹紧和吸力卡盘,用作能够拾取,运输和处理具有颜色和轮廓的物体的机器人站的机器人手臂的可互换末端执行器。 卡盘壳体包含用于通过真空抽吸力保持物体的真空系统的元件,用于以悬浮状态非接触地保持物体的涡流系统和机械边缘夹持器。 真空系统,涡流系统和机械边缘夹具可以通过接收信号识别信号的中央处理系统的命令,来自各个传感器的对象存在/不存在信号和/或物体接近信号的命令来选择性地激活,并且根据类型 由相应传感器识别的物体。 结果,卡盘可以拾取和处理诸如固体半导体晶片,纸或织物交错或小直径环之类的不同物体。
    • 3. 发明申请
    • End effector with force controlling mechanism
    • 末端执行器与力控制机构
    • US20050281661A1
    • 2005-12-22
    • US11197860
    • 2005-08-08
    • Boris KesilElik Gershenzon
    • Boris KesilElik Gershenzon
    • B25J9/16B66C23/00
    • B25J9/1633G05B2219/37003G05B2219/39505Y10S414/141
    • A precision soft-touch end effector has a mounting plate attached to a robot arm. The plate supports a stepper motor. The output shaft of the stepper motor is connected through a spring to an elongated finger that slides in a central longitudinal slot of the plate and supports a first wafer gripping post, while on the end opposite to the first wafer gripping post the mounting plate pivotally supports two L-shaped fingers with a second and third wafer gripping posts on their respective ends. The mounting plate in combination with the first sliding finger and two pivotal fingers forms the end effector of the robot arm which is thin enough for insertion into a wafer-holding slot of a wafer cassette. The end effector is equipped with a mapping sensor for detecting the presence or absence of the preceding wafer, wafer position sensors for determining positions of the wafer with respect to the end effector, and force sensors for controlling the wafer gripping force. Several embodiments relate to different arrangements of gripping rollers and mechanisms for control of the gripping force and speed of gripping required for gripping the wafer with a soft and reliable touch.
    • 精密软触头端部执行器具有附接到机器人臂的安装板。 该板支撑步进电机。 步进电动机的输出轴通过弹簧连接到细长的指状物,细长的指状物在板的中心纵向槽中滑动并且支撑第一晶片夹持柱,而在与第一晶片夹持柱相反的一端上,安装板可枢转地支撑 两个L形指状物,其第二和第三晶片夹持在它们各自的端部上。 安装板与第一滑动指状物和两个枢转指状物组合形成机器人手臂的末端执行器,其足够薄以便插入到晶片盒的晶片保持槽中。 端部执行器配备有用于检测前一晶片的存在或不存在的映射传感器,用于确定晶片相对于端部执行器的位置的晶片位置传感器,以及用于控制晶片夹持力的力传感器。 几个实施例涉及夹持辊的不同布置和用于控制用柔软可靠的触摸夹持晶片所需的夹持力和夹持速度的机构。
    • 4. 发明授权
    • Mapping sensor system for detecting positions of flat objects
    • 映射传感器系统,用于检测平面物体的位置
    • US06900451B2
    • 2005-05-31
    • US10007265
    • 2001-11-08
    • Boris KesilDavid MargulisElik Gershenzon
    • Boris KesilDavid MargulisElik Gershenzon
    • G01V8/12G01N21/86
    • G01V8/12
    • The mapping sensor system of the invention is intended for use with a mechanical arm of an industrial robot which loads and unloads flat circular objects, such as semiconductor wafers, into and from wafer cassettes on operations of processing the semiconductor wafers in stand-alone or cluster machines used in semiconductor production. The mapping system consists of a light source, a light-receiving element, and a light beam shaper. The light source is installed on the front end of the robot arm and directs the light via the beam shaper to the leading edge of the semiconductor wafer. The beam reflected from the wafer edge is sensed by a light-receiving element, such as a photodiode. The shaper modifies the shape and the cross-section of the beam directed towards the wafer so as to provide reflection from the curvilinear surface of the edge, irrespective of the existence of the notch, most optimum for detection by the photodiodes and without generation of false signals. In one embodiment, the beam shaper contains a special objective with a cylindrical lens. In another embodiment, the beam shaper comprises an anamorphotic objective with an array of microlenses.
    • 本发明的映射传感器系统旨在与工业机器人的机械臂一起使用,该机械臂在独立或集群中处理半导体晶片的操作时将诸如半导体晶片的平坦圆形物体加载到晶片盒中和从其中加载 用于半导体生产的机器。 映射系统由光源,光接收元件和光束整形器组成。 光源安装在机器人臂的前端,并将光通过光束整形器引导到半导体晶片的前缘。 从晶片边缘反射的光束由光接收元件(例如光电二极管)感测。 整形器改变了朝向晶片的光束的形状和横截面,以便提供来自边缘的曲线表面的反射,而不管凹口的存在,最适合于由光电二极管检测并且不产生假 信号。 在一个实施例中,光束整形器包含具有柱面透镜的特殊物镜。 在另一个实施例中,光束整形器包括具有微透镜阵列的变形物镜。
    • 6. 发明申请
    • Contamination-free edge gripping mechanism with withdrawable pads and method for loading/unloading and transferring flat objects
    • 无抽吸式边缘夹持机构和装载/卸载和转移平面物体的方法
    • US20070018469A1
    • 2007-01-25
    • US11188249
    • 2005-07-25
    • Elik GershenzonBoris Kesil
    • Elik GershenzonBoris Kesil
    • B65G49/07
    • H01L21/68707
    • A wafer gripping mechanism of the invention comprises a thin flat body having one linearly moveable and rotating finger for gripping an edge of the flat object and a pair of soft withdrawable object supporting pads. A distinguishing feature of the mechanism of the invention is that the wafer supporting pads are withdrawable for placing the pads into position where they do not project beyond the outlines of the external surface of the insertable portion of the gripper. The absence of elements projecting from the surface of the gripper portion insertable into narrow spaces with high speed protects the gripping mechanism, wafer, chuck, etc. from damage due to possible collision. All the drive and actuation mechanisms that are used for rotation and axial movement of the gripping finger, as well as for rotation of the withdrawable pads are enclosed in a thin hollow casing made from a thin and light-weight sheet metal.
    • 本发明的晶片夹持机构包括具有一个可直线移动和旋转的指状物的薄平坦体,用于夹持平坦物体的边缘和一对软抽出物体支撑垫。 本发明的机构的一个突出特征在于,晶片支撑垫是可取出的,用于将垫放置在不突出超过夹持器的可插入部分的外表面的轮廓的位置。 没有从夹持部的表面突出的元件能够高速插入狭窄的空间中,因此能够保护夹持机构,晶片,卡盘等免受可能的碰撞的损坏。 用于夹紧手指的旋转和轴向移动以及用于可抽出的垫的旋转的所有驱动和致动机构被封闭在由薄而轻的金属板制成的薄的中空套管中。
    • 7. 发明授权
    • Method and apparatus for preventing transfer of an object having wrong dimensions or orientation
    • 用于防止具有错误尺寸或取向的物体的传送的方法和装置
    • US06831287B2
    • 2004-12-14
    • US09976890
    • 2001-10-15
    • Boris KesilDavid MargulisElik Gershenzon
    • Boris KesilDavid MargulisElik Gershenzon
    • G01N2186
    • H01L21/68707H01L21/67763
    • The invention describes an apparatus for preventing gripping of objects having wrong dimensions or orientation. The apparatus comprises a part handler, e.g., a holder for parts to be treated in a chemical reactor, where the parts has to be transferred from a working position to a temporary storage. The holder may have different shapes, e.g., rectangular, elliptical, or circular, and is provided with positioning openings or recesses for engagement with pins or semispherical elements on the engaging surface of the part handler. The apparatus is provided with at least two through beam optical sensor units with adjustable divergence of the light beams emitted from the light emitting to the light-receiving element. The sensor units are located near the edge area of the holder. Position of the holder for aligning with the part handler is determined by combined interaction of the holder edge with the sensor units so that, depending on overlapping of one or two sensors and on the position of the overlapped zone, the apparatus determines whether or not the holder is aligned with the part handler or the gripping operation has to be rejected. In another embodiment the apparatus is equipped with three optical sensors, which simplify the control operation.
    • 本发明描述了一种用于防止夹持具有错误尺寸或取向的物体的装置。 该装置包括部件处理器,例如用于在化学反应器中待处理的部件的保持器,其中部件必须从工作位置传送到临时存储器。 保持器可以具有不同的形状,例如矩形,椭圆形或圆形,并且设置有用于与零件处理器的接合表面上的销或半球形元件接合的定位开口或凹槽。 该装置设置有至少两个通过光束光学传感器单元,其具有从发光到光接收元件的光发射的可调发散光。 传感器单元位于支架边缘区域附近。 用于与零件处理器对准的保持器的位置通过保持器边缘与传感器单元的组合相互作用来确定,使得根据一个或两个传感器的重叠以及重叠区域的位置,装置确定是否 支架与零件处理器对齐或夹紧操作必须被拒绝。 在另一个实施例中,装置配备有三个光学传感器,这简化了控制操作。
    • 8. 发明授权
    • Method and apparatus for measuring thickness of conductive films with the use of inductive and capacitive sensors
    • 使用电感和电容传感器测量导电膜厚度的方法和装置
    • US06593738B2
    • 2003-07-15
    • US09954550
    • 2001-09-17
    • Boris KesilDavid MargulisElik Gershenzon
    • Boris KesilDavid MargulisElik Gershenzon
    • G01B710
    • G01B7/082G01B7/105G01B11/0608
    • The invention relates to an apparatus for measuring thickness and deviations from the thickness of thin conductive coatings on various substrates, e.g., metal coating films in semiconductor wafer or hard drive disks. The thickness films may be as small as fractions of microns. The apparatus consists of an inductive sensor and a proximity sensor, which are rigidly interconnected though a piezo-actuator used for displacements of the inductive sensor with respect to the surface of the object being measured. Based on the results of the operation of the proximity sensor, the inductive sensor is maintained at a constant distance from the controlled surface. Variations in the thickness of the coating film and in the distance between the inductive sensor and the coating film change the current in the inductive coil of the sensor. The inductive sensor is calibrated so that, for a predetermined object with a predetermined metal coating and thickness of the coating, variations in the amplitude of the inductive sensor current reflect fluctuations in the thickness of the coating. The distinguishing feature of the invention resides in the actuating mechanism of microdisplacements and in the measurement and control units that realize interconnection between the proximity sensor and the inductive sensor via the actuating mechanism. The actuating mechanism is a piezo actuator. Measurement of the film thickness in the submicron range becomes possible due to highly accurate dynamic stabilization of the aforementioned distance between the inductive sensor and the object. According to one embodiment, the distance is controlled optically with the use of a miniature interferometer, which is rigidly connected to the inductive sensor. According to another embodiment, the distance is controlled with the use of a capacitance sensor, which is also rigidly connected to the inductive sensor.
    • 本发明涉及一种用于测量厚度和偏离各种衬底上的薄导电涂层(例如半导体晶片或硬盘驱动器盘中的金属涂层膜)的厚度的装置。 厚度薄膜可以小到几微米。 该装置包括感应传感器和接近传感器,其通过用于感应传感器相对于被测量物体的表面的位移的压电致动器刚性地互连。 基于接近传感器的操作结果,电感式传感器保持与受控表面恒定的距离。 涂膜的厚度和感应传感器与涂膜之间的距离的变化改变传感器的感应线圈中的电流。 感应传感器被校准,使得对于具有预定金属涂层的预定物体和涂层的厚度,感应传感器电流的振幅的变化反映了涂层厚度的波动。 本发明的显着特征在于微移动的致动机构以及通过致动机构实现接近传感器和感应传感器之间的互连的测量和控制单元。 致动机构是压电致动器。 由于感应传感器和物体之间的前述距离的高度精确的动态稳定性,可以测量亚微米范围内的膜厚度。 根据一个实施例,通过使用刚性地连接到电感式传感器的微型干涉仪来光学地控制距离。 根据另一个实施例,通过使用电容传感器来控制距离,电容传感器也刚性地连接到感应传感器。
    • 9. 发明申请
    • ROBOTIC STATION WITH SELF-TEACHING FUNCTIONS
    • 具有自我教学功能的机动车站
    • US20160346923A1
    • 2016-12-01
    • US14724810
    • 2015-05-29
    • Boris KesilElik Gershenzon
    • Boris KesilElik Gershenzon
    • B25J9/16
    • B25J9/163B25J9/1612B25J9/1692B25J15/0491G05B2219/39015G05B2219/39468Y10S901/03Y10S901/41
    • Provided is a robotic station with a self-teaching system. Operation of this system is automatically initiated for eliminating an accumulated error upon completion of a given number of processing cycles or expiration of a given time. The teaching system has a stationary tactile sensor and a stationary reference object the coordinates of which are known and stored in the memory of the CPU. The second stationary reference object is used for defining an operational coordinate system. In the teaching operation, the positions of all working tools, objects, and processing units are determined in the operational coordinate system by sequentially seeking and touching the searchable tools, objects and units with a changeable tactile sensor for recording their coordinates in the CPU and for subsequent use of these coordinates in object processing operations.
    • 提供了一个具有自我教学系统的机器人站。 自动启动该系统的操作,以在给定数量的处理周期完成或给定时间到期时消除累积误差。 教学系统具有固定的触觉传感器和固定参考对象,其坐标已知并存储在CPU的存储器中。 第二固定参考对象用于定义操作坐标系。 在教学操作中,在操作坐标系中确定所有作业工具,物体和处理单元的位置,通过用可变的触觉传感器依次寻找和接触可搜索的工具,对象和单元,以便在CPU中记录其坐标, 随后在对象处理操作中使用这些坐标。
    • 10. 发明授权
    • Method of teaching robotic station for processing objects
    • 用于处理物体的机器人站的教学方法
    • US09505128B1
    • 2016-11-29
    • US14749572
    • 2015-06-24
    • Boris KesilElik Gershenzon
    • Boris KesilElik Gershenzon
    • G05B19/04B25J9/16
    • B25J9/163B25J9/1692G05B2219/39015Y10S901/03Y10S901/31Y10S901/46
    • Proposed is a method of teaching an industrial robotic station with elimination of errors of assembling and installation as well as errors accumulated during operation for a predetermined operation time or a number of operation cycles. The method consists of providing a robotic station with a coordinate system fixed relative to the frame and all other stationary components including at least two reference objects, one of which is a tactile sensor and another is a hard body such as a hard spherical ball. A position of the center of the hard precision in the fixed coordinate system of the robotic station is determined via contact with a changeable tactile sensor attached to the coupling of the robot arm and is assumed as center of coordinates of an operative coordinate system which is then used for moving the robot arm to working positions memorized in a CPU and in accordance with a memorized sequence.
    • 提出了一种在预定操作时间或多个操作周期内消除组装和安装错误以及在操作期间累积的误差的教学工业机器人站的方法。 该方法包括向机器人站提供相对于框架固定的坐标系和包括至少两个参考对象的所有其它固定分量,其中一个是触觉传感器,另一个是诸如硬球体的硬体。 机器人站的固定坐标系中的硬精度的中心的位置是通过与附接到机器人手臂的联接的可变触觉传感器的接触来确定的,并且被假定为当时的操作坐标系的坐标的中心 用于将机器人手臂移动到存储在CPU中的工作位置,并根据记忆顺序。