会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明专利
    • Position measuring method for magnetic sensor
    • 磁传感器位置测量方法
    • JP2006308402A
    • 2006-11-09
    • JP2005130677
    • 2005-04-28
    • Shimadzu Corp株式会社島津製作所
    • TAKAHATA MITSUHIRO
    • G01B7/00G01R33/02
    • PROBLEM TO BE SOLVED: To accurately measure the position of a magnetic sensor at low cost without using any excessive and particular functional means.
      SOLUTION: In a portable magnetic measuring instrument, a plurality of magnetic sensors MD1, MD2, ... , and MDN, are deployed and disposed in a prescribed area 2 in the sea at each measurement. A magnetic marker MM is fixed at a specific part, such as a stem ST, of a moving marine vessel S. The marine vessel S moves in the disposition area 2 where the magnetic sensors MD1, MD2, ... , and MDN, are disposed. A magnetic field generated by the magnetic marker MM is detected and processed by the magnetic sensors MD1, MD2, ... , and MDN. The positions of the respective magnetic sensors and the relative positions of the respective magnetic sensors relative to the vessel under measurement are obtained from detected magnetism.
      COPYRIGHT: (C)2007,JPO&INPIT
    • 要解决的问题:以低成本精确地测量磁传感器的位置,而不使用任何过多和特定的功能手段。 解决方案:在便携式磁性测量仪器中,在每次测量时,多个磁性传感器MD1,MD2,...和MDN被布置并布置在海上的规定区域2中。 磁性标记MM固定在移动的海洋容器S的特定部分(例如茎ST)上。船舶S在磁性传感器MD1,MD2,...和MDN的配置区域2中移动 处置。 由磁性标记MM产生的磁场由磁性传感器MD1,MD2,...和MDN检测和处理。 从检测到的磁性中获得各个磁性传感器的位置以及相应的磁性传感器相对于测量的容器的相对位置。 版权所有(C)2007,JPO&INPIT
    • 2. 发明专利
    • Sideward magnetic-field adjustment system
    • 边界磁场调整系统
    • JP2008145326A
    • 2008-06-26
    • JP2006334343
    • 2006-12-12
    • Shimadzu Corp株式会社島津製作所
    • TAKAHATA MITSUHIRO
    • G01R35/00G01R33/02
    • PROBLEM TO BE SOLVED: To provide a sideward magnetic-field adjustment system of a vessel for accurately measuring a sideward magnetic-field of the vessel.
      SOLUTION: The sideward magnetic-field adjustment system includes: storing the sideward magnetic-field values A of a non-demagnetization state measured with sideward magnetic detectors MS1-MSn at first (ST3); next, measuring sideward magnetic-field values B in the optimum non-demagnetization state with the sideward magnetic detectors MS1-MSn (ST4); thereafter, measuring the sideward magnetic-field values C of sideward non-demagnetization state (ST5); calculating a difference D between the sideward magnetic-field values C at the time and the sideward magnetic-field value A of the first non-demagnetization state (ST6); and finding the sideward magnetic-field value of accurate optimum non-demagnetization by subtracting the difference D from the sideward magnetic-field value B in the optimum non-demagnetization state.
      COPYRIGHT: (C)2008,JPO&INPIT
    • 要解决的问题:提供用于精确测量容器的侧向磁场的容器的侧向磁场调节系统。 解决方案:侧向磁场调节系统包括:首先存储侧向磁检测器MS1-MSn测量的非退磁状态的侧向磁场值A(ST3); 接下来,利用侧向磁检测器MS1-MSn,测定最佳非退磁状态下的侧向磁场值B(ST4); 此后测量侧向非退磁状态的侧向磁场值C(ST5); 计算此时的侧向磁场值C和第一非退磁状态的侧向磁场值A之间的差D(ST6); 通过从最佳非退磁状态的侧向磁场值B减去差值D,求出精确的最佳非消磁化的侧向磁场值。 版权所有(C)2008,JPO&INPIT
    • 3. 发明专利
    • Method for magnetical measuring warship
    • 磁力测量方法
    • JP2005195479A
    • 2005-07-21
    • JP2004002568
    • 2004-01-08
    • Shimadzu Corp株式会社島津製作所
    • TAKAHATA MITSUHIRO
    • G01R33/02B63G9/06
    • PROBLEM TO BE SOLVED: To provide a method for magnetically measuring warships capable of separately measuring the permanent magnetism PLM and the vertical magnetism VM in the bow and stern directions of a warship.
      SOLUTION: Triaxial magnetic sensors 2 and 3 are arranged on the left and right sides of the warship 1 to be measured, and a triaxial magnetic sensor 4 is arranged at a sea bottom below the keel. Magnetic fields are measured with the triaxial magnetic sensors 2 and 3 when the bow of the warship to be measured is turned northward and southward. By computing their Hx components, the permanent magnetism PLM and the induced magnetism ALM in the bow and stern directions are separated from each other. A model of computed permanent magnetism PLM is created and converted into a magnetic field waveform of the triaxial magnetic sensor 4 to separate the magnetism PLM and the vertical magnetism VM in the bow and stern directions from each other.
      COPYRIGHT: (C)2005,JPO&NCIPI
    • 要解决的问题:提供一种用于磁力测量能够在军舰的弓形和船尾方向上分别测量永磁PLM和垂直磁性VM的军舰的方法。 解决方案:三轴磁传感器2和3布置在要测量的军舰1的左侧和右侧,三轴磁传感器4布置在龙骨下方的海底。 当要测量的军舰的弓被向北和向南转动时,用三轴磁传感器2和3测量磁场。 通过计算其Hx分量,弓形和船尾方向上的永磁PLM和感应磁性ALM彼此分离。 计算永磁PLM的模型被创建并转换成三轴磁传感器4的磁场波形,以将磁PLM和垂直磁VM彼此分离成弓形和船尾方向。 版权所有(C)2005,JPO&NCIPI
    • 6. 发明专利
    • Current adjustment method of demagnetization coil for vessel
    • 目前用于船舶消毒线圈的调整方法
    • JP2006335255A
    • 2006-12-14
    • JP2005163380
    • 2005-06-03
    • Shimadzu Corp株式会社島津製作所
    • TAKAHATA MITSUHIRO
    • B63G9/06H01F13/00
    • PROBLEM TO BE SOLVED: To provide a current adjustment method of a demagnetization coil for a vessel capable of increasing a reduction ratio of a far magnetic field as compared with a conventional one and capable of easily performing setting of an energization amount at the vessel. SOLUTION: An energization amount ATO of each M coil is made to the same common value α and a variation degree ΔAt of the energization amount (ST1, ST2) and the energization amount of each M coil is made to α+ΔAT (ST3). Subsequently, a mistake fit degree Mrn of a coil effect degree by the energization amount at this time and a hull magnetic at demagnetization is calculated (ST4). The mistake fit Mrn at this time and the former mistake fit degree Mra are compared with each other (ST5). When Mrn at this time is small, the energization amount of each M coil is increased by ΔAT and new Mrn with the hull magnetic at demagnetization is determined. The processing is repeated until the mistake fit degree Mrn at this time exceeds the former value. When the mistake fit degree Mrn at this time exceeds the former value, ATn at this time is made to an initial value ATf (ST7) and thereafter, it is transferred to individual adjustment of each M coil. COPYRIGHT: (C)2007,JPO&INPIT
    • 要解决的问题:为了提供一种用于能够增加远磁场的减小率的容器的消磁线圈的电流调节方法,与传统的磁场相比能够容易地执行在通常情况下的通电量的设定 船只。 解决方案:使每个M线圈的通电量ATO达到相同的公共值α,并且将通电量(ST1,ST2)和每个M线圈的通电量的变化度ΔAt设为α+ΔAT( ST3)。 随后,计算出此时的通电量的线圈效应度的错误拟合度Mrn和退磁时的船体磁性(ST4)。 此时与Mrn合并错误,并将之前的错误拟合度Mra进行比较(ST5)。 当此时的Mrn小时,每个M线圈的通电量增加ΔAT,并且确定具有退磁时的船体磁性的新Mrn。 重复处理直到此时的错误拟合度Mrn超过前一值。 当此时的错误拟合程度Mrn超过前一个值时,ATn此时被设置为初始值ATf(ST7),之后转移到每个M线圈的各个调整。 版权所有(C)2007,JPO&INPIT
    • 7. 发明专利
    • Magnetic field extraction method
    • 磁场提取方法
    • JP2005249533A
    • 2005-09-15
    • JP2004058921
    • 2004-03-03
    • Shimadzu Corp株式会社島津製作所
    • IIJIMA KENJITAKAHATA MITSUHIRO
    • G01R33/02
    • PROBLEM TO BE SOLVED: To perform calculation in a relatively shorter time than before and to accurately calculate a magnetic field extending from the vicinity of a magnetic structure to a long distance.
      SOLUTION: The magnetic structure 11 is divided into a plurality of elements in a matrix form. On each of the elements 13, induced magnetization M is calculated from magnetic permeability μs, a demagnetization factor N, and a background magnetic field H
      0 , these being physical properties of a material. The synthesis of induced magnetism of the element is regarded as a magnetism model. Magnetic fields caused by induced magnetization of the respective elements are integrated to find a remote magnetic field distant by a prescribed interval from the magnetism model.
      COPYRIGHT: (C)2005,JPO&NCIPI
    • 要解决的问题:在比以前相对更短的时间内进行计算,并且准确地计算从磁性结构附近延伸到长距离的磁场。 解决方案:磁性结构11被分成矩阵形式的多个元件。 在每个元件13上,由磁导率μs,退磁系数N和背景磁场H 0 计算出感应磁化M,这些是材料的物理性质。 元素的诱导磁性的合成被认为是磁性模型。 由各个元件的感应磁化引起的磁场被积分,以便从磁力模型中找出远离规定间隔的远程磁场。 版权所有(C)2005,JPO&NCIPI
    • 8. 发明专利
    • Intrusion monitoring device
    • 入侵监测设备
    • JP2000076560A
    • 2000-03-14
    • JP24658798
    • 1998-09-01
    • Shimadzu Corp株式会社島津製作所
    • TAKAHATA MITSUHIROMORIYA NAOJIIHARA MASAHIRO
    • G08B13/186
    • PROBLEM TO BE SOLVED: To perform detection even in the case of underwater intrusion and to realize detection in a wide range without bringing about cost increase.
      SOLUTION: Plural (i) pieces of optical fibers 31 provided with photomagnetic sensors 32 and reflecting mirrors 33 in every prescribed interval L are provided side by side, the sensors 32 being mutually adjacent to respective optical fibers 31-1,..., 31-i, are arranged with L0 shifted, plural light sources 21-1,..., 21-i are provided in accordance with the optical fibers 31-1,...,31-1, and an operating part 27 operates change in optical signals, originally being light emitted from the light source 21-1,...21-i, from the respective magnetic sources 32-11,...32-in and reflected from the reflecting mirrors owing to the difference of magnetic force due to the existence of obstacle and detects the existence and position of the obstacle.
      COPYRIGHT: (C)2000,JPO
    • 要解决的问题:即使在水下入侵的情况下也能够进行检测,并且能够在不造成成本增加的情况下实现广泛的检测。 解决方案:并排设置多个(i)在每个规定间隔L中设置有光磁传感器32和反射镜33的光纤31,传感器32与相应的光纤31-1,...,31相互相邻 -i,按照光纤31-1,...,31-1设置有L0位移的多个光源21-1,...,21-i,并且操作部27操作变化 在光信号中,原来是从光源21-1,... 21-i发射的光,从各个磁源32-11,... 32-in发射并且由于磁场的差异而从反射镜反射 由于障碍物的存在而产生的力,并检测障碍物的存在和位置。
    • 9. 发明专利
    • Demagnetization coil automatic setting device of warship
    • 灭火线圈自动设置装置
    • JP2009132385A
    • 2009-06-18
    • JP2008317788
    • 2008-12-15
    • Shimadzu Corp株式会社島津製作所
    • TAKAHATA MITSUHIRO
    • B63G9/06H01F13/00
    • PROBLEM TO BE SOLVED: To provide a demagnetization coil automatic setting device of a warship capable of reducing lateral magnetic fields without being in an excess demagnetization condition. SOLUTION: Before setting an M-coil, an A-coil is set with respect to a Y- component at a magnetic center position under a hull keel (ST1), a ratio of PLM/ILM is calculated from an X-component at a lateral magnetic center position (ST21), an under-keel PLM is estimated by multiplying an under-keel ILM by the PLM/ILM calculated at the ST21 (ST22), an under-keel VM is calculated by subtracting the PLM estimated at the ST22 from an under-keel VM+PLM (ST23) and M coil setting is performed with respect to the calculated VM (ST3). COPYRIGHT: (C)2009,JPO&INPIT
    • 要解决的问题:提供能够减小横向磁场而不处于过度退磁状态的军舰的退磁线圈自动设定装置。 解决方案:在设置M线圈之前,相对于在船体龙骨(ST1)下的磁中心位置处的Y分量设置A线圈,从X轴计算PLM / ILM的比率, (ST21),通过将下龙骨ILM乘以在ST21(ST22)计算出的PLM / ILM来估计下龙骨PLM,通过将估计的PLM减去PLM来计算下龙骨VM 在来自下龙骨VM + PLM(ST23)的ST22处,并且相对于计算出的VM执行M线圈设定(ST3)。 版权所有(C)2009,JPO&INPIT
    • 10. 发明专利
    • Hull magnetism measurement system
    • HULL MAGNETISM测量系统
    • JP2007003260A
    • 2007-01-11
    • JP2005181618
    • 2005-06-22
    • Shimadzu Corp株式会社島津製作所
    • UENO TAKEHIROTAKAHATA MITSUHIRO
    • G01R33/00G01R33/02
    • PROBLEM TO BE SOLVED: To provide a hull magnetism measurement system for accurately calculating magnetic moment generated by a hull.
      SOLUTION: When measurement processing is started, a pitching angle Θ, a rolling angle Φ, and a heading angle Ψ of the hull 6, are measured (ST2) by a motion sensor 9 installed in the hull 6 till measurement end time comes. Besides, the relative positions x, y and z of the hull 6 from a magnetic detector 3, and magnetism Bx, By and Bz are measured by the magnetic detector 3 (ST3 and ST4). After the measurement ends, magnetic moment Mx, My and Mz are calculated from the relative positions x, y and z, and from the measured magnetism Bx, By and Bz (ST6). Further, a corrected operation is performed in consideration of the above rocking angles Θ, Φ and Ψ, to calculate magnetic moment Ml, Ma and Mv peculiar to the hull (ST7).
      COPYRIGHT: (C)2007,JPO&INPIT
    • 要解决的问题:提供用于精确计算由船体产生的磁矩的船体磁测量系统。 解决方案:当测量处理开始时,通过安装在船体6中的运动传感器9测量船体6的俯仰角Θ,滚动角度Φ和航向角Ψ(ST2),直到测量结束时间 谈到。 此外,磁检测器3(ST3和ST4)测量来自磁检测器3的壳体6的相对位置x,y和z以及磁Bx,By和Bz。 测量结束后,从相对位置x,y和z以及测量磁力Bx,By和Bz(ST6)计算磁矩Mx,My和Mz。 此外,考虑到上述摇摆角度Θ,Φ和Ψ来执行校正的操作,以计算船体特有的磁矩M1,Ma和Mv(ST7)。 版权所有(C)2007,JPO&INPIT