会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明专利
    • Aerodynamic characteristic measuring method of object for improving aerodynamic characteristic, method of optimizing object shape, object optimized using the same, and shape variable model for aerodynamic characteristic evaluating experiment
    • 用于改善气象特性的目标物体的气象特征测量方法,优化对象形状的方法,使用其优化的对象以及用于动态特征评估实验的形状可变模型
    • JP2009145259A
    • 2009-07-02
    • JP2007324503
    • 2007-12-17
    • Railway Technical Res Inst財団法人鉄道総合技術研究所
    • IKEDA MITSURUKOYO GONAKAMURA YOSHIHIRONAGAMINE FUTOSHI
    • G01M9/08B60L5/20
    • Y02T10/56
    • PROBLEM TO BE SOLVED: To provide an object shape optimizing method or the like performed for providing a desired aerodynamic characteristic to an object by using aerodynamic parameters (dynamic lift, aerodynamic sound or the like) determined experimentally.
      SOLUTION: In the object shape optimizing method for providing the desired aerodynamic characteristic to the object in fluid, a model that simulates the cross-sectional shape of the object and whose profile is variable is used. First, a constraint condition is set in S1, and an initial profile of the cross-sectional shape of the object under the constraint condition is set and the profile of the model is set so as to correspond to the initial profile in S2. The model is placed in the fluid and physical quantity relevant to an action received from the fluid by the model is measured in S3, and an objective function is calculated using the measured value in S4. Until the objective function becomes minimum or maximum in S5, the profile of the cross-sectional shape of the object is changed by the optimizing method (S6), and the profile of the model is changed so as to correspond to the changed profile (S7).
      COPYRIGHT: (C)2009,JPO&INPIT
    • 要解决的问题:通过使用通过实验确定的空气动力学参数(动态提升,空气动力学声音等)来提供对物体提供期望的空气动力特性所执行的物体形状优化方法等。 解决方案:在用于向流体中的物体提供期望的空气动力特性的物体形状优化方法中,使用模拟物体的横截面形状并且其轮廓是可变的模型。 首先,在S1中设置约束条件,并且在约束条件下设置对象的截面形状的初始轮廓,并且将模型的轮廓设置为与S2中的初始轮廓对应。 该模型被放置在流体中,并且在S3中测量与通过模型从流体接收的动作相关的物理量,并且使用S4中的测量值来计算目标函数。 在S5中,直到目标函数变为最小或最大为止,通过优化方法(S6)改变对象的横截面形状的轮廓,并且改变模型的轮廓以对应于改变的轮廓(S7 )。 版权所有(C)2009,JPO&INPIT