会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明专利
    • Ultrasonic cleaning apparatus, and ultrasonic cleaning method
    • 超声波清洗装置和超声波清洗方法
    • JP2011255274A
    • 2011-12-22
    • JP2010130211
    • 2010-06-07
    • Kaijo CorpNational Institute Of Advanced Industrial Science & Technology株式会社カイジョー独立行政法人産業技術総合研究所
    • TSUJIUCHI TORUIIDA YASUOYASUI KYUICHIIMAZEKI YASUHIROHASEGAWA HIROSHI
    • B08B3/12C23G3/00C23G5/00H01L21/304
    • H01L21/02052B08B3/12H01L21/67057
    • PROBLEM TO BE SOLVED: To provide an ultrasonic cleaning apparatus and an ultrasonic cleaning method, preventing uneven cleaning appearing subsequent to the ultrasonic cleaning of an object to be cleaned.SOLUTION: The ultrasonic cleaning apparatus including a cleaning tank 21 wherein a cleaning liquid 23 is stored, a first and a second ultrasonic oscillators 34a, 34b that apply ultrasonic oscillations to an object 22 to be cleaned immersed in the cleaning liquid 23 disposed in the cleaning tank 21, a first ultrasonic wave generator 36 that applies a high frequency output to the first ultrasonic oscillator 34a, a second ultrasonic wave generator 37 that applies a high frequency output to the second ultrasonic oscillator 34b, and a controller 38 that controls at least one of the outputs of the first and the second oscillators 34a, 34b in a manner of causing the same to vary, is characterized in that the first ultrasonic wave generated by the first ultrasonic oscillator 34a is made to interfere with the second ultrasonic wave generated by the second ultrasonic oscillator 34b.
    • 要解决的问题:提供一种超声波清洗装置和超声波清洗方法,防止在清洁对象物体的超声波清洗之后出现不均匀的清洁。 解决方案:超声波清洗装置包括清洗液21,其中存储有清洗液23,第一和第二超声波振荡器34a,34b,其将超声波振荡施加到待设置的清洗液23中浸渍的待清洁物体22 在清洗槽21中,向第一超声波振荡器34a施加高频输出的第一超声波发生器36,向第二超声波振荡器34b施加高频输出的第二超声波发生器37,以及控制器 第一和第二振荡器34a,34b的输出中的至少一个以使其相同的方式变化,其特征在于,使由第一超声波振荡器34a产生的第一超声波与第二超声波 由第二超声波振荡器34b产生。 版权所有(C)2012,JPO&INPIT
    • 2. 发明专利
    • Method and apparatus of ultrasonic noncontact micro-manipulation
    • 超声非线性微操作的方法与装置
    • JP2012040647A
    • 2012-03-01
    • JP2010184236
    • 2010-08-19
    • National Institute Of Advanced Industrial Science & TechnologyUniv Of Electro-Communications国立大学法人電気通信大学独立行政法人産業技術総合研究所
    • KOZUKA TERUYUKIYASUI KYUICHITSUJIUCHI TORUTOWATA ATSUYAHATANAKA SHINICHI
    • B81B1/00B01J19/10G01N37/00
    • PROBLEM TO BE SOLVED: To provide ultrasonic noncontact micro-manipulation technology capable of capturing and moving micro substances in a micro flow path without bringing an ultrasonic vibrator into direct contact with a liquid medium, and controlling a direction of the flow of the micro substances in the liquid medium in which the micro substances disperse with a simple structure.SOLUTION: The micro flow path composed of at least a pair of a wall and a bottom is formed. The ultrasonic vibrator is attached parallel to the linear flow path, on one of side faces of a solid cell where the micro flow path comprises a linear flow path and a branched flow path branched into two branches in the midway. The liquid medium in which the micro substances disperse is made to flow in the micro flow path. Ultrasonic waves from the ultrasonic vibrator are transmitted as propagating waves from a solid cell section on the ultrasonic vibrator side from the flow path into the micro flow path. The ultrasonic waves are reflected on the wall facing the side wall of the ultrasonic vibrator of the micro flow path to make them into reflected waves. The propagating waves and the reflected waves are interfered to generate a sound field of standing waves. The micro substances are captured at a node of sound pressure, thereby controlling the direction of the flow of the medium.
    • 要解决的问题:提供能够在微流路中捕获和移动微物质而不使超声波振动器与液体介质直接接触的超声波非接触微操作技术,并且控制流动方向 其中微量物质以简单的结构分散的液体介质中的微量物质。 解决方案:形成由至少一对壁和底部组成的微流路。 超声波振动器平行于线性流路连接在固体电池的一个侧面上,其中微流路包括线性流路和在中途分支成两个分支的分支流路。 使微细散布的液体介质在微流路中流动。 来自超声波振动器的超声波作为传播波从超声波振子侧的固体电池部分从流路传递到微流路。 超声波在面向微流路的超声波振子的侧壁的壁上反射,使其成为反射波。 传播波和反射波被干扰以产生驻波的声场。 在声压节点捕获微量物质,从而控制介质的流动方向。 版权所有(C)2012,JPO&INPIT
    • 3. 发明专利
    • Noncontact cleaning method using ultrasonic wave
    • 使用超声波的非接触式清洁方法
    • JP2012217876A
    • 2012-11-12
    • JP2011083096
    • 2011-04-04
    • National Institute Of Advanced Industrial Science & Technology独立行政法人産業技術総合研究所
    • KOZUKA TERUYUKIYASUI KYUICHITOWATA ATSUYA
    • B08B7/00B06B1/06B06B3/04
    • PROBLEM TO BE SOLVED: To provide a noncontact cleaning method using ultrasonic waves that can remove fine dirt deposited on and adhering to the surface of a solid cleaning object in a noncontact manner without immersing the cleaning object into liquid.SOLUTION: In the noncontact cleaning method using ultrasonic waves, ultrasonic waves are irradiated to the surface of the solid cleaning object in a noncontact manner from the opposite side in a gas phase for removing solid minute objects, such as fine dust, adhering to the surface of the solid cleaning object, whereby the solid minute objects are vibrated and flipped off, or peeled off and then separated and the minute objects are lifted up to the nodes of sound pressure to be captured or spattered to be made in a removable state and then removed.
    • 要解决的问题:提供一种使用超声波的非接触式清洁方法,其可以以非接触方式去除沉积在固体清洁物体表面上并附着在固体清洁物体表面上的细小污物而不将清洁物体浸入液体中。 解决方案:在使用超声波的非接触式清洁方法中,超声波以非接触的方式从气相的相反侧照射到固体清洁体的表面,用于除去细小的尘埃等固体微小物体,粘附 到固体清洁物体的表面,由此固体微小物体被振动和翻转,或者剥离,然后分离,并且将微小物体提升到要被捕获或溅射的声压节点以制成可移除的 状态然后删除。 版权所有(C)2013,JPO&INPIT
    • 4. 发明专利
    • Hollow complex and its manufacturing method
    • 中空复合及其制造方法
    • JP2006326557A
    • 2006-12-07
    • JP2005157776
    • 2005-05-30
    • National Institute Of Advanced Industrial & Technology独立行政法人産業技術総合研究所
    • TOWATA ATSUYAIIDA YASUOYASUI KYUICHITSUJIUCHI TORUKOZUKA TERUYUKIOTA KAZUNORIOOHASHI MASAYOSHI
    • B01J20/28A61K8/19B01J20/02B01J20/04B01J20/06B01J20/08B01J20/10C01B13/32C01B33/12C01G23/04C01G25/02
    • PROBLEM TO BE SOLVED: To provide a porous hollow particle which has an inorganic porous structure of a metallic compound and maintains the shell shape of a particulate biomaterial, its manufacturing method, and a functional member.
      SOLUTION: The porous hollow particle is made by precipitating the metallic compound on the surface of the particulate biomaterial or covering the surface with the metallic compound, has the porous structure of the metallic compound, and maintains the shell shape of the particulate biomaterial. The functional member contains the hollow particle as a component. The manufacturing method can easily manufacture micron-sized porous hollow particle of which the particle shape and particle diameter are relatively uniform by an environment-friendly method. The porous hollow particle can be suitability used as a particulate material for, for example, an adsorbent, a separation material, pigment, a cosmetic, a catalyst, and paint by using its characteristics, such as high adsorptive capacity, a high light-reflex property, and a high friction function.
      COPYRIGHT: (C)2007,JPO&INPIT
    • 要解决的问题:提供一种多孔中空颗粒,其具有金属化合物的无机多孔结构并保持颗粒状生物材料的壳形状,其制造方法和功能构件。 解决方案:多孔中空颗粒是通过将金属化合物沉淀在颗粒生物材料的表面上或用金属化合物覆盖表面而制成的,具有金属化合物的多孔结构,并保持颗粒状生物材料的壳形状 。 功能性构件包含中空颗粒作为组分。 该制造方法可以通过环保方法容易地制造其颗粒形状和粒径相对均匀的微米级多孔中空颗粒。 多孔中空颗粒可以适用于例如吸附剂,分离材料,颜料,化妆品,催化剂和涂料的颗粒材料,通过使用其特性,例如高吸附能力,高反射光 性能和高摩擦功能。 版权所有(C)2007,JPO&INPIT
    • 7. 发明专利
    • Device and method of ultrasonic micromanipulation using solid cell having curved reflector
    • 使用具有弯曲反射器的固体电池进行超声波微型化的装置和方法
    • JP2014091195A
    • 2014-05-19
    • JP2012242864
    • 2012-11-02
    • National Institute Of Advanced Industrial & Technology独立行政法人産業技術総合研究所
    • KOZUKA TERUYUKIYASUI KYUICHIEGUCHI KAKUMASA
    • B81B1/00B01J19/10G01N37/00
    • PROBLEM TO BE SOLVED: To provide a non-contact manipulation technique of easily controlling a flow direction of microscopic objects in a liquid medium in which the microscopic objects are dispersed, without increasing output of an ultrasonic transducer.SOLUTION: An ultrasonic non-contact micromanipulation method uses a solid cell 1. The solid cell 1 includes: a microchannel 2 which is constituted by wall parts 3A and 3B and a bottom part 4, and has an inlet 5 and outlets 6A and 6B for a liquid medium in which microscopic objects are dispersed. The microchannel 2 includes: a linear flow channel 2A; a branch flow channel 2B branched in mid-course; and an accumulating place 7 provided at a branching-off point. An ultrasonic transducer 8 is attached on a side face of one wall part 3A of the solid cell 1 so as to be parallel with the linear flow channel. In the method, the liquid medium in which the microscopic objects are dispersed is made to flow in the microchannel, ultrasonic waves from the ultrasonic transducer 8 are propagated as traveling waves through a lower part of the microchannel and propagated in the microchannel as reflection waves at the curved wall part 3B of the microchannel facing a side face of the ultrasonic transducer, and by applying acoustic radiation pressure to the microscopic objects, a flow direction of the microscopic objects in the liquid medium is controlled.
    • 要解决的问题:提供一种在不增加超声波换能器的输出的情况下容易地控制在其中分散有微观物体的液体介质中的微观物体的流动方向的非接触操作技术。解决方案:超声波非接触显微操作 方法使用固体电池1.固体电池1包括:由壁部分3A和3B和底部4构成的微通道2,并且具有用于液体介质的入口5和出口6A和6B,液体介质的微观对象为 分散。 微通道2包括:线性流动通道2A; 中间分支的分支流路2B; 以及设置在分支点处的累积部位7。 超声波换能器8安装在固体单元1的一个壁部3A的侧面上,以与线性流动通道平行。 在该方法中,将微细物体分散的液体介质在微通道中流动,来自超声波换能器8的超声波作为行波传播通过微通道的下部,并作为反射波在微通道中传播 微通道的弯曲壁部分3B面对超声换能器的侧面,并且通过对微观物体施加声辐射压力,控制液体介质中的微观物体的流动方向。
    • 8. 发明专利
    • Porous composite body, and method for producing the same
    • 多孔复合体及其制造方法
    • JP2007070161A
    • 2007-03-22
    • JP2005259039
    • 2005-09-07
    • National Institute Of Advanced Industrial & Technology独立行政法人産業技術総合研究所
    • TOWATA ATSUYAIIDA YASUOYASUI KYUICHITSUJIUCHI TORUKOZUKA TERUYUKIOTA KAZUNORIOOHASHI MASAYOSHI
    • C04B38/00B01D39/16B01D71/02C04B38/06
    • PROBLEM TO BE SOLVED: To provide a porous material composed of an accumulated body of porous bodies each having an inorganic porous structure of a metallic compound(s) and holding the outer shell shape of a granular biological material, to provide a method for producing the same, and to provide a functional member.
      SOLUTION: The porous material is formed in such a manner that a metallic compound(s) is precipitated, covered or mixed on the surface of a granular biological material or into a solution. The porous material is composed of an accumulated body of porous bodies each having a porous membrane structure of the metallic compound(s) and holding the outer shell shape of the biological material. The production method uses the same. The functional member is obtained by using the same. According to this invention, the porous material having bimodal pores of macropores whose pore shape and pore size are relatively uniformly arranged and mesopores composed as a wall can be easily produced and provided by an environment-friendly means. The porous material can be suitably used as porous materials such as an absorber, a separation material, a catalyst and a filter utilizing the characteristics of its high adsorption performance.
      COPYRIGHT: (C)2007,JPO&INPIT
    • 要解决的问题:提供一种多孔体,其由具有金属化合物的无机多孔结构并保持粒状生物材料的外壳形状的多孔体的积体构成,以提供一种方法 用于制造它们,并提供功能性成员。 解决方案:多孔材料以这样一种方式形成,使金属化合物沉淀,覆盖或混合在粒状生物材料的表面或溶液中。 多孔材料由多孔体的堆积体组成,每个多孔体具有金属化合物的多孔膜结构并保持生物材料的外壳形状。 生产方法使用相同。 通过使用它来获得功能元件。 根据本发明,可以容易地制造具有细孔形状和孔径相对均匀布置的大孔的双峰孔和由壁构成的中孔的多孔材料,并且通过环境友好的方式提供。 多孔材料可以适当地用作多孔材料,例如吸收剂,分离材料,催化剂和利用其高吸附性能的特性的过滤器。 版权所有(C)2007,JPO&INPIT
    • 9. 发明专利
    • Micro-fluid device
    • 微流体装置
    • JP2006136757A
    • 2006-06-01
    • JP2004325932
    • 2004-11-10
    • Hitachi Industries Co LtdNational Institute Of Advanced Industrial & Technology株式会社 日立インダストリイズ独立行政法人産業技術総合研究所
    • IIDA YASUOYASUI KYUICHITSUJIUCHI TORUENDO KIJU
    • B01J19/00B01F3/08B01F5/00B01F11/02B81B1/00G01N37/00
    • PROBLEM TO BE SOLVED: To provide a micro-fluid device constituted so as not only to markedly enhance the efficiency of the mutual mixing or reaction of different liquids but also to achieve miniaturization.
      SOLUTION: The micro-fluid device 100 is equipped with a micro-fluid element 10 constituted so as to perform the mixing or chemical reaction of different kinds of liquids supplied from at least two liquid supply ports 15a and 15n in a fine flow channel 28 to discharge the mixture or chemical reaction product of the liquids from the liquid discharge port 18 provided on the downstream side, a liquid feed system for feeding the different kinds of the liquids to the respective liquid supply ports 15a and 15n of the micro-fluid element 10 and a drain system for taking out the liquid discharged from the liquid discharge port 18 of the micro-fluid element 10. This micro-fluid device 100 is provided with an ultrasonic oscillation element 41 constituted so that a fine flow channel 28 is formed by almost parallel opposed wall surfaces 11a and 12a and the liquids flowing through the gap between the almost parallel opposed wall surfaces 11a and 12a are irradiated with ultrasonic waves reflected by the almost parallel opposed wall surfaces 11a and 12a to form a specific flow Fs crossing a liquid flow direction.
      COPYRIGHT: (C)2006,JPO&NCIPI
    • 要解决的问题:提供一种微流体装置,其不仅显着提高了不同液体的相互混合或反应的效率,而且实现了小型化。 解决方案:微流体装置100配备有微流体元件10,该微流体元件10被构造成对来自至少两个液体供给口15a和15n的细流中供给的不同种类的液体进行混合或化学反应 通道28,用于从设置在下游侧的液体排出口18排放液体的混合物或化学反应产物,用于将不同种类的液体供给到微型液体供给口15a和15n的液体供给系统, 流体元件10和用于取出从微流体元件10的液体排出口18排出的液体的排水系统。该微流体装置100设置有超声波振动元件41,其构成为使细流路28为 由几乎平行的相对的壁表面11a和12a形成,并且流过几乎平行的相对的壁表面11a和12a之间的间隙的液体被反射的超声波 通过几乎平行的相对的壁表面11a和12a以形成与液体流动方向交叉的特定流Fs。 版权所有(C)2006,JPO&NCIPI
    • 10. 发明专利
    • Liquid treatment method using ultrasonic chemical action by addition of bubble, and device therefor
    • 使用通过添加泡沫的超声波化学作用的液体处理方法及其装置
    • JP2007275694A
    • 2007-10-25
    • JP2006101524
    • 2006-04-03
    • National Institute Of Advanced Industrial & Technology独立行政法人産業技術総合研究所
    • TSUJIUCHI TORUYASUI KYUICHIIIDA YASUOKOZUKA TERUYUKITOWATA ATSUYA
    • B01J19/10B01F11/02
    • PROBLEM TO BE SOLVED: To provide an oxidizer-generating method by means of ultrasonic wave irradiation, a chemical reaction-accelerating method and a device therefor.
      SOLUTION: In the oxidizer-generating method, the generation of an oxidizer is increased by reducing a concentration of a gas dissolved in a liquid and/or adding fine bubbles (micro bubbles) at the time of irradiation of ultrasonic waves. The chemical reaction-accelerating method increases an oxidizer-generation quantity in a liquid by making use of the oxidizer-generating method to increase a quantity of a chemical reaction which the oxidizer accelerates. The oxidizer-generating device and a material treatment device are provided with; baths in which a liquid is accommodated; means which irradiate the liquid in the baths with ultrasonic waves; and means which add micro bubbles to the baths and/or means which make a liquid flow. Accordingly, fine bubbles (micro bubbles) are added to a liquid at the time of the irradiation of ultrasonic waves to increase cavitation, and consequently an increase in oxidizer-generation quantity and an increase in chemical reaction quantity can be accelerated.
      COPYRIGHT: (C)2008,JPO&INPIT
    • 要解决的问题:提供通过超声波照射的氧化剂生成方法,化学反应加速方法及其装置。 解决方案:在氧化剂生成方法中,通过在照射超声波时降低溶解在液体中的气体的浓度和/或添加微小气泡(微小气泡)来增加氧化剂的产生。 化学反应促进方法通过利用氧化剂生成方法增加液体中的氧化剂产生量,以增加氧化剂加速的化学反应的量。 提供氧化剂生成装置和材料处理装置; 容纳液体的浴缸; 用超声波照射浴液中的液体的装置; 以及向浴和/或使液体流动的装置添加微气泡的装置。 因此,在超声波照射时,向液体中添加微小气泡(微小气泡),以增加空穴化,可以促进氧化剂生成量的增加和化学反应量的增加。 版权所有(C)2008,JPO&INPIT