会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明专利
    • The camera of the distance measurement and rapid automatic focusing method and apparatus
    • JP3473964B2
    • 2003-12-08
    • JP25829791
    • 1991-07-03
    • ザ・リサーチ・ファンデーション・オブ・ステート・ユニバーシティ・オブ・ニューヨーク
    • ムラリダラ・スバラオ
    • G01C3/06G02B7/36G03B13/36G06T1/00H04N5/232
    • G02B7/36
    • Apparatus and methods based on signal processing techniques are disclosed for determining the distance of an object from a camera, rapid autofocusing of a camera, and obtaining focused pictures from blurred pictures produced by a camera. The apparatus of the present invention includes a camera characterized by a set of four camera parameters: position of the image detector or film inside the camera, focal length of the optical system in the camera, the size of the aperture of the camera, and the characteristics of the light filter in the camera. In the method of the present invention, at least two images of the object are recorded with different values for the set of camera parameters. The two images are converted to a standard format to obtain two normalized images. The values of the camera parameters and the normalized images are substituted into an equation obtained by equating two expressions for the focused image of the object. The two expressions for the focused image are based on a new deconvolution formula which requires computing only the derivatives of the normalized images and a set of weight parameters dependent on the camera parameters and the point spread function of the camera. In particular, the deconvolution formula does not involve any Fourier transforms and therefore the present invention has significant advantages over prior art. The equation which results from equating two expressions for the focused image of the object is solved to obtain a set of solutions for the distance of the object. A third image of the object is then recorded with new values for the set of camera parameters. The solution for distance which is consistent with the third image and the new values for the camera parameters is determined to obtain the distance of the object. Based on the distance of the object, a set of values is determined for the camera parameters for focusing the object. The camera parameters are then set equal to these values to accomplish autofocusing. After determining the distance of the object, the focused image of the object is obtained using the deconvolution formula. A generalized version of the method of determining the distance of an object can be used to determine one or more unknown camera parameters. This generalized version is also applicable to any linear shift-invariant system for system parameter estimation and signal restoration.