会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明专利
    • Sound velocity distribution measuring device, sound velocity distribution measuring method, program and computer-readable storage medium
    • 声速分布测量装置,声速分布测量方法,程序和计算机可读存储介质
    • JP2006308383A
    • 2006-11-09
    • JP2005129922
    • 2005-04-27
    • Katsuhiro KawashimaNippon Steel Corp捷宏 川島新日本製鐵株式会社
    • NAGATA YASUAKIHASHIGUCHI SHOHEIKAWASHIMA KATSUHIRO
    • G01H5/00G01N29/00
    • PROBLEM TO BE SOLVED: To perform most suitably material measurement or internal stress measurement inside a measuring object, by accurately measuring the sound velocity distribution of ultrasonic waves inside the measuring object.
      SOLUTION: The average sound velocity in the thickness direction Y of a measuring plate 101 is measured by an average sound velocity measuring means 10, the sound velocity near the surface of the measuring plate 101 is measured by a surface sound velocity measuring means 20, and the position of an extreme value of the sound velocity in the thickness direction Y of the measuring plate 101 is calculated by an extreme value position calculation means 30, based on the measured average sound velocity V in the thickness direction Y and the sound velocity near the surface. Then, the sound velocity distribution of the ultrasonic wave in the thickness direction Y of the measuring plate 101 is calculated by a sound velocity distribution calculation means 40, based on the calculated position of the extreme value of the sound velocity.
      COPYRIGHT: (C)2007,JPO&INPIT
    • 要解决的问题:通过精确测量测量对象内的超声波的声速分布,在测量对象内进行最适当的材料测量或内部应力测量。 解决方案:测量板101的厚度方向Y上的平均声速由平均声速测量装置10测量,测量板101表面附近的声速由表面声速测量装置 20,并且通过极值位置计算装置30,基于测量的厚度方向Y上的平均声速V和声音来计算测量板101的厚度方向Y上的声速极值的位置 表面附近的速度。 然后,基于计算出的声速极值的位置,通过声速分布计算单元40计算超声波在测量板101的厚度方向Y上的声速分布。 版权所有(C)2007,JPO&INPIT
    • 12. 发明专利
    • Optical shape measurement method
    • 光学形状测量方法
    • JP2006189315A
    • 2006-07-20
    • JP2005001145
    • 2005-01-06
    • Nippon Steel Corp新日本製鐵株式会社
    • HASHIGUCHI SHOHEIKUNINAGA MANABU
    • G01B11/24
    • PROBLEM TO BE SOLVED: To provide a simple measurement method for minutely measuring a true shape of a strip-shaped body in its entirety, the body moving at a high speed with its height varying.
      SOLUTION: According to this shape measurement method of an optical cutting mode, a linear laser light source with its output modulated is used to form an optical cut image on the strip-shaped body, and a linear sensor of a delay integration type is used on the imaging side to perform overlap-imaging while shifting the cut image bit by bit, thus restoring the shape of the strip-shaped body. In this method, a widthwise position including only vibration components is searched for and a lengthwise height variation of a plate at this position is subtracted from a shape including vibration to remove the vibration, thereby measuring an original shape. Further, wave pitches are found from a change in the length of a widthwise cross-sectional curve while finding an elongation percentage from the length of a longitudinal height curve of the plate to simply calculate a wave height by sine-wave approximation.
      COPYRIGHT: (C)2006,JPO&NCIPI
    • 要解决的问题:为了提供一种简单的测量方法,用于精细地测量条形体的整体的真实形状,身体高度变化高速移动。 解决方案:根据这种光学切割模式的形状测量方法,使用其输出调制的线性激光光源在条形体上形成光学切割图像,并且使用延迟积分型线性传感器 被用于成像侧以进行重叠成像,同时逐位移动切割图像,从而恢复条形体的形状。 在该方法中,搜索仅包括振动分量的宽度方向位置,并且从包括振动的形状中减去该位置处的板的纵向高度变化以去除振动,从而测量原始形状。 此外,从宽度方向横截面曲线的长度的变化中发现波距,同时从板的纵向高度曲线的长度找到伸长率,以通过正弦波近似简单地计算波高。 版权所有(C)2006,JPO&NCIPI
    • 13. 发明专利
    • Laser ultrasonic inspection method using thermoelastic effect of laser pulse beam
    • 使用激光脉冲光束的热敏效应的激光超声波检测方法
    • JP2010230558A
    • 2010-10-14
    • JP2009079722
    • 2009-03-27
    • Nippon Steel CorpPoscoポスコ新日本製鐵株式会社
    • NAGATA YASUAKIHAMADA NAOYAYAMADA HIROHISAHASHIGUCHI SHOHEIRIN CHUN SUOH KI JANGPARK HYUN CHULKANG MYOUNG KOOHUH HYEONG JUN
    • G01N29/00
    • PROBLEM TO BE SOLVED: To provide a laser ultrasonic inspection method for measuring ultrasonic waves at the optimal efficiency by increasing an ultrasonic signal strength at a measurement point as the ultrasonic waves are generated by using a thermoelastic effect for preventing a surficial damage from being generated.
      SOLUTION: In the laser ultrasonic inspection method by using the pulse laser beam so as to generate the ultrasonic waves in a workpiece, a surface of the workpiece is irradiated with a plurality of pulse laser spots 3 triangularly or circularly arrayed, or a ring-like pulse laser spot. The ultrasonic waves are generated in the workpiece by the thermoelastic effect. The laser ultrasonic inspection method is provided, and characterized by measuring the ultrasonic waves in the center of a regular polygon, a circle or a ring, and using an ultrasonic superposition effect at the measurement point 10.
      COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:提供一种通过在通过使用用于防止表面损伤的热弹性效应产生超声波的同时通过增加测量点处的超声波信号强度来以最佳效率测量超声波的激光超声波检查方法 被生成。 解决方案:在通过使用脉冲激光束以在工件中产生超声波的激光超声波检查方法中,工件的表面被三角形或圆形排列的多个脉冲激光点3照射,或者 环状脉冲激光点。 通过热弹性效应在工件中产生超声波。 提供了激光超声波检查方法,其特征在于测量正多边形,圆形或环形的中心的超声波,并且在测量点10处使用超声波叠加效应。版权所有(C)2011 ,JPO&INPIT
    • 14. 发明专利
    • Particle size measuring instrument and particle size measuring method
    • 颗粒尺寸测量仪和颗粒尺寸测量方法
    • JP2010025663A
    • 2010-02-04
    • JP2008185731
    • 2008-07-17
    • Nippon Steel Corp新日本製鐵株式会社
    • HASHIGUCHI SHOHEI
    • G01N15/02G03H1/04
    • PROBLEM TO BE SOLVED: To provide a particle size measuring instrument capable of measuring the particle size of a measuring target on the basis of three-dimensional measurement, and a particle size measuring method. SOLUTION: A horography interference system which splits the coherence beam emitted from a wave source 1 into the irradiation wave 2a to a matter 6 and a reference wave 2c and allowing the matter wave 2b being the diffused reflected wave from a surface to be measured to interfere with the reference wave 2c is constructed while the interference fringe of the reference wave 2c and the matter wave 2b observed on an imaging surface 10a is observed and a matter image is reproduced by the reproducing calculation based on digital horography. The phase difference of the matter image respectively recorded and reproduced by two wavelengths is taken to magnify a contour interval, and then the surface shape of the surface to be measured is restored by phase connection. The coordinates of the internal regions of the particles constituting the surface to be measured are extracted by the magnitude of the amplitude of the matter image and the particle size of the individual particle is operated. COPYRIGHT: (C)2010,JPO&INPIT
    • 要解决的问题:提供一种能够基于三维测量来测量测量对象的粒径的粒度测量仪和粒度测量方法。 解决方案:将从波源1发射的相干光束分解成辐射波2a到物质6和参考波2c并将物质波2b从表面扩散的反射波分解成的水平干涉系统 被测量为干涉参考波2c时,在观察到参考波2c和物镜波2b的干涉条纹被观察并通过基于数字水印的再现计算再现物质图像的同时被构造。 分别通过两个波长记录和再现的物体图像的相位差放大轮廓间隔,然后通过相位连接恢复要测量的表面的表面形状。 构成待测表面的颗粒的内部区域的坐标通过物质图像的幅度的大小被提取,并且各个粒子的粒径被操作。 版权所有(C)2010,JPO&INPIT
    • 15. 发明专利
    • Surface flaw shape detection method for welded part, and computer program
    • 焊接部件的表面形状检测方法和计算机程序
    • JP2008267836A
    • 2008-11-06
    • JP2007107599
    • 2007-04-16
    • Nippon Steel Corp新日本製鐵株式会社
    • HASHIGUCHI SHOHEI
    • G01N21/892B23K31/00G01B11/24
    • PROBLEM TO BE SOLVED: To detect, more simply and accurately than conventionally, the size and depth of a surface flaw on a welded part from a cross-section profile of the welded part.
      SOLUTION: The cross-section profile of the welded part is extracted to find the rate of change in the cross-section profile. Outermost left/right steep change parts of the welded part where the rate of change is large are taken as left/right toe parts. An inside bead part lying between the left/right toe parts is approximated and expressed by means of a first function by using cross-section profile data other than the change parts corresponding to flaw parts. A parent material part on the left-outside of the left toe part is approximated and expressed by means of a second function, while a base material part on the right-outside of the right toe part is approximated and expressed by means of a third function. The intersection of the first and second functions is found as a left toe point, while an intersection of the first and third functions is found as a right toe point. The left and right toe points, as divisional points, and a divisional approximated curve expressed by the first to third functions, as a reference line, are deducted from the original cross-section profile.
      COPYRIGHT: (C)2009,JPO&INPIT
    • 要解决的问题:从焊接部分的横截面轮廓来检测焊接部件上的表面缺陷的尺寸和深度比以往更简单和准确。

      解决方案:提取焊接部件的横截面轮廓以找出横截面轮廓的变化率。 作为左/右脚趾部分,变更率较大的焊接部的最左侧/右侧陡峭变化部分。 位于左/右脚趾部之间的内侧胎圈部通过使用除了与缺损部对应的变更部以外的截面形状数据,通过第一功能进行近似表示。 通过第二功能近似和表示左脚趾部左侧的母材部分,同时通过第三功能近似并表示右脚趾部的右外侧的基材部分 。 第一和第二功能的交点被发现为左脚尖点,而第一和第三功能的交点被发现为右脚尖点。 从原始横截面轮廓中扣除作为参考线的左右脚趾点,分割点和由第一至第三功能表示的分割近似曲线。 版权所有(C)2009,JPO&INPIT

    • 16. 发明专利
    • Elastic constant measuring device, elastic constant measuring method, program, and computer-readable storage medium
    • 弹性恒定测量装置,弹性恒定测量方法,程序和计算机可读存储介质
    • JP2007127547A
    • 2007-05-24
    • JP2005321155
    • 2005-11-04
    • Nippon Steel Corp新日本製鐵株式会社
    • NAGATA YASUAKIHAMADA NAOYAHASHIGUCHI SHOHEI
    • G01N29/00
    • G01N2291/02827
    • PROBLEM TO BE SOLVED: To measure an elastic constant of a polycrystal contactlessly with a long separate distance with respect to a measured plate, without using a surface SH wave.
      SOLUTION: The first sonic velocity calculation part 731 calculates, as the first sonic velocity, a sonic velocity in the first transverse ultrasonic wave of an ultrasonic wave generated in an inside of the measured plate and polarized longitudinally, the second sonic velocity calculation part 732 calculates, as the second sonic velocity, a sonic velocity in the second transverse ultrasonic wave of an ultrasonic wave generated in the inside of the measured plate and polarized width-directionally, the third sonic velocity calculation part 733 calculates, as the third sonic velocity, a sonic velocity in a longitudinal ultrasonic wave of an ultrasonic wave generated in the inside of the measured plate and propagated along a plate thickness direction, the fourth sonic velocity calculation part 734 calculates, as the fourth sonic velocity, a sonic velocity in a surface ultrasonic wave of an ultrasonic wave generated in the inside of the measured plate and displaced along the plate thickness direction, and an elastic constant calculation part 74 calculates the elastic constant of the polycrystal constituting the measured object, based on the first-fourth sonic velocities.
      COPYRIGHT: (C)2007,JPO&INPIT
    • 要解决的问题:不使用表面SH波,以相对于测量的板非常接近地分离距离的多晶体的弹性常数来测量。 解决方案:第一声速计算部分731计算出在测量板内部产生的超声波的第一横向超声波中纵向极化的第一声速,声波速度,第二声速计算部分 作为第二声速,部分732计算出在测量板的内部产生的超声波的第二横向超声波的偏振方向上的声速,并且偏振宽度方向,第三声速计算部733计算出作为第三声音 速度,超声波的纵向超声波中的声速,在测量板的内部产生并沿板厚方向传播,第四声速计算部734将第四声速计算为第四声速, 超声波的表面超声波在测量板的内部产生并沿着板厚度移位 ss方向,并且弹性常数计算部74基于第一至第四声波速度计算构成测量对象的多晶体的弹性常数。 版权所有(C)2007,JPO&INPIT