会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明公开
    • BIOMETRIC AUTHENTICATION DEVICE
    • VORRICHTUNGFÜRBIOMETRISCHE AUTHENTIFIZIERUNG
    • EP2660775A1
    • 2013-11-06
    • EP10861485.0
    • 2010-12-27
    • Fujitsu Limited
    • UNO, KazuyaABIKO, Yukihiro
    • G06T7/00
    • G06K9/0008G06K9/00087G06K9/00926G06K9/6807
    • A biometric authentication device, inputs biometric information such as a fingerprint, extracts feature information included in the biometric information, calculates the degree of reliability of the biometric information on the basis of the feature information, obtains a classification of the biometric information on the basis of the feature information, calculates the degree of reliability of the obtained classification, determines whether or not to execute an identification process between the input biometric information and biometric information enrolled in a storage unit on the basis of the degree of reliability of the biometric information and of classification, further determines whether or not a re-input process of the biometric information is needed, executes an identification process for the biometric information when it is determined that the identification process is needed, and issues a re-input instruction for the biometric information when it is determined that the re-input process is needed.
    • 生物体认证装置输入诸如指纹的生物特征信息,提取生物特征信息中包含的特征信息,根据特征信息计算生物信息的可靠度,基于特征信息获得生物特征信息的分类 特征信息,计算所获得的分类的可靠度,基于生物体信息的可靠度确定是否执行输入生物体信息和登记在存储单元中的生物特征信息之间的识别处理,以及 进一步确定是否需要生物信息的重新输入处理,当确定需要识别处理时执行生物特征信息的识别处理,并且当生物特征信息的重新输入指令发生时, 确定了re-inp 需要进程。
    • 4. 发明公开
    • METHOD AND APPARATUS FOR VISUAL SEARCH STABILITY
    • VERFAHREN UND VORRICHTUNG ZUR STABILISIERUNG VISUELLER SUCHEN
    • EP2558980A2
    • 2013-02-20
    • EP11768553.7
    • 2011-04-15
    • Nokia Corporation
    • GAO, JiangJACOB, MatthiasSCHLOTER, PhilippRUOTTINEN, Pasi
    • G06K9/00G06F17/30
    • G06K9/228G06K9/6807G06K2009/3291
    • Various methods for visual search stability are provided. One example method includes determining a plurality of image matching distances for a captured object depicted in a video frame, where each image matching distance being indicative of a quality of a match between the captured object and a respective object match result. The example method further includes including, in a candidate pool, an indication of the object match results having image matching distances in a candidate region, discarding the object match results having image matching distances in a non-candidate region, and analyzing the object match results with image matching distances in a potential candidate region to include, in the candidate pool, indications of select object match results with image matching distances in the potential candidate region. Similar and related example methods and example apparatuses are also provided.
    • 提供了用于视觉搜索稳定性的各种方法。 一个示例性方法包括为视频帧中描绘的捕获对象确定多个图像匹配距离,其中每个图像匹配距离指示所捕获对象与相应对象匹配结果之间的匹配质量。 示例性方法还包括在候选池中包括在候选区域中具有图像匹配距离的对象匹配结果的指示,丢弃在非候选区域中具有图像匹配距离的对象匹配结果,以及分析对象匹配结果 具有潜在候选区域中的图像匹配距离,以在候选池中包括在潜在候选区域中具有图像匹配距离的选择对象匹配结果的指示。 还提供了类似的和相关的示例性方法和示例设备。
    • 10. 发明公开
    • Data analysis method
    • Verfahren zur Datenanalyse
    • EP1355240A1
    • 2003-10-22
    • EP02252733.7
    • 2002-04-18
    • BRITISH TELECOMMUNICATIONS public limited company
    • The designation of the inventor has not yet been filed
    • G06F17/30
    • G06F17/30705G06K9/6217G06K9/6807
    • Current classification methods attempt to classify each classification value into a separate class. Consequently, a lot of effort is dedicated to distinguishing between two or more similar classification objects, meaning that supervised learning procedures are slow and produce classifiers that are excessively large. Moreover, the classifiers are often difficult to understand, and take a long time to be generated.
      Embodiments of the invention are concerned with reducing the number of classification values that can be used to classify a data item. Relationships between classification values are identified on the basis of attribute values in a set of training data, and those classification values that are determined to be related to one another are subsumed into a single classification group.
      An embodiment of the invention is thus concerned with identifying groups of classification values corresponding to a set of data, where each data item in the set is characterised by a plurality of attributes, and each attribute has one of a plurality of attribute values associated therewith. The method comprises the steps of:

      (i) selecting an attribute;
      (ii) identifying, on the basis of the distribution of attribute values, two classification values that are least similar to one another and allocating a first identified classification value to a first group and a second identified classification value to a second group;
      (iii) allocating each unidentified classification value to one of the groups in dependence on correlation between the unidentified classification value and the first and second identified classification values;
      (iv) evaluating an association between the first and second groups and the selected attribute;
      (v) repeating steps (i) to (iv) for each of at least some of the plurality of attributes
      (vi) comparing associations evaluated at step (iv) and selecting first and second groups corresponding to the weakest association;
      (vii) for each of the first and second groups repeating steps (i) to (vi) for the classification values therein, until the association evaluated at step (iv) falls below a predetermined threshold value.

      Essentially classification groups are repeatedly analysed with respect to a range of attributes so as to identify all possible groupings of classification values. For example, classification values Daily Mail, Daily Express, The Times, The Guardian, Vogue, New Scientist, Economist, Cosmopolitan, FHM, House and Garden are analysed with respect to a selection of attributes (e.g. sex, age, occupation etc.). Assuming that the analysis identifies the classification values as falling within two classification groups: [Daily Mail, Daily Express, Cosmopolitan, FHM] and [The Times, The Guardian, Vogue, New Scientist, Economist, House and Garden], each of these groups is then analysed with respect to the same, or a different, selection of attributes. This second round of analysis may identify further clusters of classification values - e.g. the analysis could show that the classification values in the latter group are clustered into two distinct groups: [ House and Garden, Vogue ] and [ The Times, The Guardian, New Scientist, Economist ]. After each round of analysis an association between the groups and attributes is measured and is compared with a threshold; this comparison identifies whether or not the groups are sufficiently different as to justify splitting up the classification values into groups.
    • 当前的分类方法尝试将每个分类值分类到一个单独的类中。 因此,大量的努力专门用于区分两个或更多个类似的分类对象,这意味着监督学习过程缓慢并且产生过大的分类器。 此外,分类器往往难以理解,需要很长时间才能产生。 本发明的实施例涉及减少可用于对数据项进行分类的分类值的数量。 基于一组训练数据中的属性值来识别分类值之间的关系,并且被确定为彼此相关的那些分类值被归入单个分类组。 因此,本发明的实施例涉及识别与一组数据相对应的分类值组,其中集合中的每个数据项由多个属性表征,并且每个属性具有多个属性中的一个 与之相关联的值。 该方法包括以下步骤:(i)选择属性; (ii)基于属性值的分布来识别彼此最不相似的两个分类值,并将第一识别的分类值分配给第一组,将第二识别分类值分配给第二组; (iii)根据未识别的分类值与第一和第二识别的分类值之间的相关性,将每个未识别的分类值分配给组中的一个; (iv)评估第一组和第二组之间的关联以及所选择的属性; (v)针对所述多个属性中的至少一些属性(vi)中的每一个重复步骤(i)至(iv),以比较在步骤(iv)处评估的关联并选择对应于最弱关联的第一和第二组; (vii)对于第一组和第二组中的每一个,对于其中的分类值重复步骤(i)至(vi),直到在步骤(iv)评估的关联低于预定阈值。 相对于一系列属性重复分析基本分类组,以便识别所有可能的分类值分组。 例如,分类价值观分析了每一个“每日邮报”,“每日快报”,“时代报”,“卫报”,“时尚”,“新科学家”,“经济学家”,“大都会”,“家庭与家庭” 。 假设分析确定分类值属于两个分类组:Ä日报,每日快报,大都会,FHMÜ和ÄTheTimes,“卫报”,“时尚”,“新科学家”,“经济学家”,“House and Garden” 尊重相同或不同的属性选择。 第二轮分析可以识别进一步的分类值簇 - 例如。 分析可以表明,后一组的分类值分为两个不同的组:ÄHouseand Garden,VogueÜ和ÄTheTimes,The Guardian,New Scientist,EconomistÜ。 在每轮分析之后,测量组和属性之间的关联并将其与阈值进行比较; 该比较确定组是否有足够的不同,以证明将分类值分成组。