会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明公开
    • DECOMPOSITION OF NON-STATIONARY SIGNALS INTO FUNCTIONAL COMPONENTS
    • ZERSETZUNG VONNICHTSTATIONÄRENSIGNALEN FUNKTIONSKOMPONENTEN
    • EP3057500A4
    • 2017-06-21
    • EP14854385
    • 2014-10-13
    • KAOSKEY PTY LTD
    • MELKONYAN DMITRI
    • A61B5/04A61B5/00A61B5/0402A61B5/0476A61B5/05G06F17/00G06F19/00G06F19/12G06F19/24G06K9/00
    • G06F19/3437A61B5/04A61B5/7246A61B5/7253A61B5/7264G01R23/167G06F17/11G06F17/14G06K9/0055G16H50/50
    • A method of signal processing and, in particular, a method of decomposing non-stationary signals representative of a physiological phenomenon into functional components, and to estimate parameters characterizing each of those functional components. The method utilises means for estimating dynamic and baseline trends in the time course of the signal, means for dividing the non-stationary signal into the segments over which the functional components are developed and means for compensating for overlap from QGK matched to preceding functional components to form an ECK. The compensation comprises means for transforming the ECK to a frequency domain, means for estimating the weight and dispersion parameters of the QGK, and validation of the parameter reliability, means for estimating the onset time of the QGK, means for expansion of the model of the non-stationary signal after each cycle of recursion, means for removal of unfavourable QGKs and rearrangement of remaining QGKs and means for creating partial models of the non-stationary signal with parameters belonging to predefined classes.
    • 一种信号处理方法,特别是一种将表示生理现象的非平稳信号分解成功能成分,并估计表征每个功能成分的参数的方法。 该方法利用用于估计信号的时间进程中的动态和基线趋势的装置,用于将非平稳信号划分为功能组件在其上展开的片段的装置以及用于补偿从匹配到前面的功能组件的QGK重叠到 形成一个ECK。 该补偿包括用于将ECK变换到频域的装置,用于估计QGK的加权和扩散参数的装置,以及参数可靠性的确认,用于估计QGK的开始时间的装置,用于扩展 递归每个循环之后的非平稳信号,用于去除不利QGK和重新排列剩余QGK的装置以及用于利用属于预定义类别的参数来创建非平稳信号的部分模型的装置。
    • 3. 发明公开
    • ANOMALY DETECTION SYSTEM AND METHOD
    • 异常检测系统和方法
    • EP3139313A2
    • 2017-03-08
    • EP16153770.9
    • 2016-02-09
    • Tata Consultancy Services Limited
    • MALHOT RA, PankajSHROFF, Gauta MAGARWAL, PuneetVIG, Lovek Esh
    • G06N3/04G06F17/18G06K9/00G06K9/62
    • G06F17/30371G06F17/18G06F17/30324G06K9/0055G06K9/6284G06N3/0445
    • An anomaly detection system and method is provided. The system comprising: a hardware processor; and a memory storing instructions to configure the hardware processor, wherein the hardware processor receives a first time-series data comprising a first set of points and a second time-series data comprising a second set of points, computes a first set of error vectors for each point of the first set, and a second set of error vectors for each point of the second set, each set of error vectors comprising one or more prediction errors; estimates parameters based on the first set of error vectors comprising; applies (or uses) the parameters on the second set of error vectors; and detects an anomaly in the second time-series data when the parameters are applied on the second set of error vectors.
    • 提供了一种异常检测系统和方法。 该系统包括:硬件处理器; 以及存储器,其存储用于配置所述硬件处理器的指令,其中所述硬件处理器接收包括第一组点的第一时间序列数据和包括第二组点的第二时间序列数据,计算第一组误差向量 第一组的每个点以及第二组的每个点的第二组误差向量,每组误差向量包括一个或多个预测误差; 基于第一组误差向量估计参数,包括: 在第二组误差向量上应用(或使用)参数; 并且当参数被应用于第二组误差向量时检测第二时间序列数据中的异常。