会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 9. 发明公开
    • OPERATION METHOD FOR MICRO-COGENERATION SYSTEM
    • BETRIEBSVERFAHRENFÜREIN MIKRO-HEIZKRAFTSYSTEM
    • EP2484983A2
    • 2012-08-08
    • EP10820787.9
    • 2010-09-08
    • Kyungdong Navien Co., Ltd.
    • MIN, Tae-sik
    • F24D10/00F24D19/10
    • F24D3/08F24D12/02F24D19/1066F24D2200/04F24D2200/16F24D2200/32F24H2240/00Y02B10/70Y02B30/14Y02B30/52Y02E20/14Y02P80/15
    • The present invention is directed to provide an operation method for a micro-cogeneration system that enables the use of heat recovered from a co-generator for both space heating and generating hot water by connecting the co-generator and a heat transfer medium channel of the boiler, thereby reducing the cost required for operating the cogeneration system, and facilitates the control of heat to be supplied in heating mode and in hot water mode. To this end, the present invention comprises: operating a co-generator (100) having a heat exchanger (110) for recovering waste heat that is produced during the power generation; performing a control operation in such a manner that a heat transfer medium supplied from the co-generator (100) is stored in a heat transfer medium reservoir tank (300) after going through a boiler (200) connected to the heat exchanger (110), and the heat transfer medium stored in the heat transfer medium reservoir tank (300) is circulated into the heat exchanger (110) of the co-generator (100); operating only the co-generator (100) when there is no heating and hot water loads; and stopping the operation of the co-generator (100) if it is determined that the temperature of the heat transfer medium inside the heat transfer medium reservoir tank (300) has reached a preset temperature.
    • 本发明旨在提供一种微型热电联产系统的操作方法,其能够使用从共发电机回收的热量用于空间加热和通过连接共发电机和热交换介质通道的热交换介质通道 锅炉,从而降低了操作热电联产系统所需的成本,并且便于在加热模式和热水模式下供热的控制。 为此,本发明包括:操作具有用于回收在发电期间产生的废热的热交换器(110)的共发电机(100); 执行控制操作,使得从共发生器(100)供应的传热介质在通过连接到热交换器(110)的锅炉(200)之后被存储在传热介质储存罐(300)中, ,并且储存在传热介质储存罐(300)中的传热介质循环到共发生器(100)的热交换器(110)中; 当没有加热和热水负荷时,仅操作共发电机(100); 如果确定传热介质储罐(300)内部的传热介质的温度已经达到预设温度,则停止共发生器(100)的操作。
    • 10. 发明公开
    • Power generation system and method
    • Stromerzeugungssystem und -verfahren
    • EP2369145A1
    • 2011-09-28
    • EP10002430.6
    • 2010-03-09
    • Siemens Aktiengesellschaft
    • Littemyr, PeterTifnicevic, DarkoTjellander, Göran
    • F01K23/10F01K23/18F01K3/06F01K17/02F24D10/00F02C7/14F02C7/12
    • F01K23/10F01K3/06F01K17/025F01K23/18F24D10/003F24H2240/00Y02E20/14Y02E20/16
    • A power generation system (2) having a first heat exchanger (18), a second heat exchanger (20), a third heat exchanger (22) and a fourth heat exchanger (24) for transferring or receiving heat to an ambient air (8) entering a gas turbine system (4) according to climate conditions. The first heat exchanger (18) is included to transfer heat from a working fluid (26) to said ambient air (8) entering said gas turbine inlet (6). The second heat exchanger (20) is included for transferring heat to the working fluid (26) from a fluid (28) received downstream of said heat recovery steam generator unit (10), said second heat exchanger (20) being connected to the first heat exchanger (18) by a first flow path (30) of the working fluid (26). The third exchanger (22) is included for transferring heat to the working fluid (26) from said process cooling fluid (14), said third heat exchanger (22) being connected to said second heat exchanger (20) by a second flow path (32) of the working fluid (26) and further connected to the first heat exchanger (18) by a third flow path (34) of the working fluid (26), wherein said first (30), second (32) and third (34) flow paths define a first circulation path (38) of the working fluid (26). The fourth heat exchanger (24) is included to connect to said first heat exchanger (18) through a fourth flow path (36) and to connect to said third flow path (34) to define a second circulation path (56) in parallel to said first circulation path (38), and to cool said working fluid (26) by transferring heat from said working fluid (26) to a exchanger cooling fluid (46) received from one of an absorption chiller (48) that is fed with a steam output (50) from the steam turbine (44), or a forwarding district cooling line (52) that is supplied with a cool fluid (54) cooled by said absorption chiller (48).
    • 具有第一热交换器(18),第二热交换器(20),第三热交换器(22)和第四热交换器(24)的发电系统(2),用于向周围空气(8 )根据气候条件进入燃气轮机系统(4)。 包括第一热交换器(18)以将热量从工作流体(26)传递到进入燃气轮机入口(6)的所述环境空气(8)。 包括第二热交换器(20),用于从接收在所述热回收蒸汽发生器单元(10)下游的流体(28)将热量传递到工作流体(26),所述第二热交换器(20)连接到第一热交换器 热交换器(18)通过工作流体(26)的第一流动路径(30)。 包括第三交换器(22),用于将热量从所述过程冷却流体(14)传递到工作流体(26),所述第三热交换器(22)通过第二流动路径(...)连接到所述第二热交换器(20) 工作流体(26)的第三流动路径(34),并且还通过工作流体(26)的第三流动路径(34)连接到第一热交换器(18),其中所述第一(30),第二(32)和第三 34)流动路径限定了工作流体(26)的第一循环路径(38)。 第四热交换器(24)被包括以通过第四流动路径(36)连接到所述第一热交换器(18)并且连接到所述第三流动路径(34)以限定平行于 所述第一循环路径(38),并且通过将热量从所述工作流体(26)传递到从由吸入式冷却器(48)中的一个接收的交换器冷却流体(46)而冷却所述工作流体(26) 来自蒸汽轮机(44)的蒸汽输出(50)或提供有由所述吸收式制冷机(48)冷却的冷流体(54)的前进区冷却管线(52)。