会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明公开
    • METHOD AND APPARATUS FOR IMAGE SEARCH USING SPARSIFYING ANALYSIS OPERATORS
    • 使用分散分析算子进行图像搜索的方法和设备
    • EP3166022A1
    • 2017-05-10
    • EP15306771.5
    • 2015-11-06
    • Thomson Licensing
    • BILEN, CagdasZEPEDA SALVATIERRA, JoaquinPEREZ, Patrick
    • G06F17/30
    • G06F17/30247
    • In a particular implementation, images are represented by feature vectors, whose sparse representations are computed using an analysis operator. The sparse representations of the images are then used to efficiently compute similarity metrics between the images. Using pair-wise constraints where each pair of images is indicated as similar or dissimilar, the analysis operator can be trained for the task of image matching. Using triplet constraints wherein a first image and a second image are indicated as more similar than the first image and a third image are, the analysis operator can be trained for the task of image ranking. The analysis operator can be computed using an optimization problem based on a penalty function and sparsity constraints, or using a multiple layer neural network. The analysis operator can also be used to compute a Mahalanobis metric transformation matrix.
    • 在特定实现中,图像由特征向量表示,其稀疏表示使用分析操作符来计算。 然后使用图像的稀疏表示来有效地计算图像之间的相似性度量。 在每对图像被指示为相似或不相似的情况下,使用成对约束,分析操作员可以被训练用于图像匹配的任务。 使用三重约束,其中第一图像和第二图像被指示为比第一图像和第三图像更相似,分析操作员可以被训练用于图像排序的任务。 可以使用基于惩罚函数和稀疏性约束的优化问题或使用多层神经网络来计算分析算子。 分析运算符也可用于计算Mahalanobis度量转换矩阵。
    • 5. 发明公开
    • METHOD AND APPARATUS FOR IMAGE SEARCH USING SPARSIFYING ANALYSIS AND SYNTHESIS OPERATORS
    • 方法和设备图片搜索BY LICHTUNGSANALYSE-和-SYNTHESEOPERATOREN
    • EP3166021A1
    • 2017-05-10
    • EP15306770.7
    • 2015-11-06
    • Thomson Licensing
    • BILEN, CagdasZEPEDA SALVATIERRA, JoaquinPEREZ, Patrick
    • G06F17/30
    • G06F17/30247
    • In a particular implementation, images are represented by feature vectors, whose sparse representations are computed using an analysis operator. The sparse representations of the images and a synthesis operator are used to efficiently compute similarity metrics between the images. When the sparse representation of the query image is readily available, a symmetric similarity metric is calculated using the sparse representation of the query image and database images. Otherwise, when the sparse representation of the query image is not available, an asymmetric similarity metric can be calculated using the feature vector of the query image and sparse representations of the database images. Given pair-wise constraints or triplet constraints on similarity, the synthesis operator can be computed using an optimization problem based on a penalty function. Also, the synthesis operator can be learned jointly with the analysis operator.
    • 在具体实施时,图像是由特征向量,谁稀疏表示使用在分析运营商计算为代表。 图像和合成操作者的稀疏表示被用于有效地计算图像之间的相似性的指标。 当查询图像的稀疏表示是现成的,对称相似性度量是使用查询图像和数据库图像的稀疏表示计算。 否则,当查询图像的稀疏表示不可用于非对称相似性量度可以使用查询图像和数据库图像的稀疏表示的特征向量进行计算。 基于问题上的罚函数给定的成对约束或约束三重上的相似性,在合成操作者可以利用在优化计算。 因此,综合运营商可以共同与分析运营商的经验教训。
    • 6. 发明公开
    • METHODS, SYSTEMS AND APPARATUS FOR AUTOMATIC VIDEO QUERY EXPANSION
    • VERFAHREN,SYSTEME UND VORRICHTUNG ZUR AUTOMATISCHEN VIDEOABFRAGEERWEITERUNG
    • EP3096243A1
    • 2016-11-23
    • EP15305780.7
    • 2015-05-22
    • Thomson Licensing
    • ZEPEDA SALVATIERRA, JoaquinBABON, Frédéric
    • G06F17/30G06K9/62
    • G06F17/30784G06K9/00711G06K9/6254G06K9/6293
    • The present principles provide methods and systems for searching a plurality of videos, including determing a first classifier based on a search query, a first scored plurality of videos based on the first classifier and a plurality of videos; determining at least a second plurality of features based on the first scored plurality of videos; determining at least a second classifier; determining a fused classifier based on the first classifier and the at least a second classifier; determining a second scored plurality of videos based on the fused classifier and the plurality of videos; where the first plurality of features are determined based on a first search utilizing the search query, the first plurality of features are each of a first type video feature and the at least second plurality of features are each of at least a second type video features; wherein the first type video feature is different than the at least a second type of video feature.
    • 本原理提供了用于搜索多个视频的方法和系统,包括基于搜索查询来确定第一分类器,基于第一分类器和多个视频确定第一划分的多个视频; 基于所述第一划分的多个视频确定至少第二多个特征; 确定至少第二分类器; 基于所述第一分类器和所述至少第二分类器确定融合分类器; 基于所述融合分类器和所述多个视频确定第二划分的多个视频; 其中基于使用所述搜索查询的第一搜索来确定所述第一多个特征,所述第一多个特征中的每一个都是第一类型视频特征,并且所述至少第二多个特征中的每一个都至少是第二类型的视频特征; 其中所述第一类型视频特征不同于所述至少第二类型的视频特征。