会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 7. 发明公开
    • CAP ASSEMBLY FOR A MEDICAMENT DELIVERY DEVICE
    • EP3490645A1
    • 2019-06-05
    • EP17739946.6
    • 2017-07-07
    • SHL Medical AG
    • MAXFIELD, Brian
    • A61M5/32
    • The present disclosure relates to a cap assembly (5) for a medicament delivery device, comprising: a cap (7) having a tubular body (7b) defining an axially extending distal opening (7c) and configured to be mounted to a proximal end of a medicament delivery device, wherein the cap (7) has a bottom structure (7e) defining a proximal end of the distal opening (7c), wherein the bottom structure (7e) has a cam structure (7f) provided inside the tubular body (7b), and wherein the tubular body (7b) has inner walls provided with radial recesses (7d), and an elongated squeeze member (9) configured to be received in the distal opening (7c) of the tubular body (7b), and having a longitudinally extending channel (9d) configured to receive a delivery member shield, and which squeeze member (9) has radial arms (9e) flexible in the radial direction and forming part of a wall of the channel (9d), wherein the squeeze member (9) has a proximal end face (9a) configured to cooperate with the cam structure (7f) of the cap (7), whereby axial displacement of the squeeze member (9) from a first position in which the proximal end face (9a) bears against the cam structure (7f) to a second position in which the squeeze member (9) is received further by the cap (7) causes rotation of the squeeze member (9) relative to the cap (7), wherein the radial arms (9e) are configured to engage with a respective radial recess (7d) of the tubular body (7b) in the first position of the squeeze member (9), and wherein the radial arms (9e) are configured to disengage from the respective radial recess when the squeeze member (9) is displaced from the first position to the second position and rotated, whereby the flexible radial arms (9e) are pressed into the channel (9d) by the inner walls of the tubular body (7b), reducing a cross-sectional area of the channel (9d).