会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明公开
    • Thrust correction
    • Schubkraftkorrektur
    • EP1860416A2
    • 2007-11-28
    • EP07252104.0
    • 2007-05-22
    • Rolls-Royce plc
    • Parfitt, Robert NeilTurville, Martin RogerBristow, Maurice CharlesBrown, Stephen Geoffrey
    • G01L5/13
    • G01L5/133G01M15/14
    • In a method for determining the free field thrust of a gas turbine engine the gas turbine engine is attached to a movable support means in an enclosed gas turbine engine test facility, and is operated at a selected engine operating point. The thrust applied by the engine to the thrust cradle is measured via thrust measurement means. Calculations are performed to determine the gas turbine engine intake momentum drag generated by airflow into the gas turbine engine intake, the thrust cradle drag force generated by airflow past the moveable support means of the thrust cradle, the base drag generated as a result of accelerating nozzle ejector airflow, a pre-stream tube force related to turning of stream lines in the intake air path, a pre-stream tube force related to a bell mouth pull-off force. Also forces due to forward anemometer plane and nozzle static pressures and a nozzle exit buoyancy force and determined, and all of these forces are summed according to their respective positive and negative values to determine the free field thrust of the engine at the selected engine operating point.
    • 在用于确定燃气涡轮发动机的自由场推力的方法中,燃气涡轮发动机附接到封闭的燃气涡轮发动机测试设备中的可移动支撑装置,并且在选定的发动机工作点操作。 发动机施加到推力支架上的推力通过推力测量装置测量。 执行计算以确定由气流进入燃气涡轮发动机进气口产生的燃气涡轮发动机进气动量阻力,由气流通过推力支架的可移动支撑装置产生的推力支架拖曳力,作为加速喷嘴产生的基础阻力 喷射器气流,与进气通道中的流线的转动相关的预流管力,与喇叭口拉脱力相关的预流管力。 还由于前进的风速计平面和喷嘴静压力和喷嘴出口浮力而产生的力并确定,并且所有这些力根据它们各自的正值和负值相加以确定发动机在所选发动机工作点的自由场推力 。
    • 6. 发明公开
    • Aircraft takeoff
    • 飞机起飞
    • EP1616788A2
    • 2006-01-18
    • EP05253647.1
    • 2005-06-14
    • ROLLS-ROYCE PLC
    • Brown, Stephen Geoffrey
    • B64D45/00B64D31/00F02C9/00
    • F02C9/44B64C19/00B64D31/00
    • The present invention provides a method of operating an aircraft whereby actual acceleration of an aircraft is used as the direct measure of the capability of the aircraft to takeoff. Thus, a minimum takeoff acceleration is determined for an aircraft and then through appropriate sensing means for acceleration, actual acceleration of the aircraft is determined and compared with that predetermined minimum takeoff acceleration. If the actual aircraft acceleration exceeds the minimum takeoff acceleration then an indication such as a buzzer or signal is provided. The present method may also be used in cooperation with existing takeoff determining systems utilising engine thrust as the means of determining aircraft capability to takeoff. The authority of the various aircraft takeoff criteria can be adjusted as required. Furthermore, the present aircraft acceleration regime may be utilised with regard to adjusting existing engine thrust means for determining takeoff or cruise capability.
    • 本发明提供了一种操作飞机的方法,借此飞机的实际加速度被用作飞机起飞能力的直接量度。 因此,为飞机确定最小起飞加速度,然后通过用于加速度的适当感测装置确定飞行器的实际加速度并与该预定最小起飞加速度进行比较。 如果实际飞机加速度超过最小起飞加速度,则会提供蜂鸣器或信号等指示。 本方法还可以与现有的利用发动机推力的起飞确定系统一起用作确定飞机起飞能力的手段。 各种飞机起飞标准的权力可以根据需要进行调整。 此外,可以利用当前的飞机加速状态来调整用于确定起飞或巡航能力的现有发动机推力装置。
    • 7. 发明公开
    • A gas turbine engine with variable area exhaust nozzle and method of operating such a gas turbine engine
    • 具有可变面积排气喷嘴的燃气涡轮发动机以及操作这种燃气涡轮发动机的方法
    • EP2184480A3
    • 2017-12-20
    • EP09252067.5
    • 2009-08-26
    • Rolls-Royce plc
    • Hillel, Malcolm LaurenceBrown, Stephen Geoffrey
    • F02K1/12F01D17/08F01D17/14F02K3/06F02K3/04F02K3/075F02C9/18
    • F01D17/08F01D17/14F01D17/141F02C9/18F02K1/1207F02K3/04F02K3/06F02K3/075Y02T50/671
    • A turbofan gas turbine engine (10) comprises a variable area exhaust nozzle (12) arranged at the downstream end of a casing (17). A control unit (66) analyses the power produced by the gas turbine engine (10), the flight speed of the gas turbine engine (1) and/or the altitude of the gas turbine engine (10). The control unit (66) configures the variable area nozzle (12) at a first cross-sectional area (70A) when the flight speed of the gas turbine engine (10) is less than a first predetermined value. The control unit (66) configures the variable area nozzle (12) at a second, smaller, cross-sectional area (70B) when the flight speed of the gas turbine engine (10) is greater than the first predetermined value and the power produced by the gas turbine engine (10) is greater than a second predetermined value. The control unit (66) configures the variable area nozzle (12) at a third, intermediate, cross-sectional area (70C) when the flight speed of the gas turbine engine (10) is greater than the first predetermined value and the power produced by the gas turbine engine (10) is less than the second predetermined value.
    • 涡轮风扇燃气涡轮发动机(10)包括布置在壳体(17)的下游端处的可变面积排气喷嘴(12)。 控制单元(66)分析由燃气涡轮发动机(10)产生的动力,燃气涡轮发动机(1)的飞行速度和/或燃气涡轮发动机(10)的高度。 当燃气涡轮发动机(10)的飞行速度小于第一预定值时,控制单元(66)在第一横截面积(70A)处构造可变面积喷嘴(12)。 当燃气涡轮发动机(10)的飞行速度大于第一预定值并且所产生的功率大于第二预定值时,控制单元(66)将可变面积喷嘴(12)配置在第二小横截面积(70B) 通过燃气涡轮发动机(10)大于第二预定值。 当燃气涡轮发动机(10)的飞行速度大于第一预定值和产生的功率时,控制单元(66)将可变面积喷嘴(12)配置在第三中间横截面积(70C) 燃气涡轮发动机(10)的转速小于第二预定值。