会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明公开
    • ZIRCONIUM ALLOY HAVING EXCELLENT CORROSION RESISTANCE AND CREEP RESISTANCE, AND METHOD FOR MANUFACTURING SAME
    • 具有优异的耐腐蚀性和抗蠕变性的锆合金及其制造方法
    • EP3284836A1
    • 2018-02-21
    • EP15889277.8
    • 2015-05-08
    • Kepco Nuclear Fuel Co. Ltd.
    • CHOI, Min YoungMOK, Yong KyoonKIM, Yoon HoNA, Yeon SooLEE, Chung YongJUNG, Tae SikKO, Dae GyunLEE, Seung JaeKIM, Jae Ik
    • C22C16/00C22F1/18B21B3/00
    • C22C16/00B22D7/005B22F1/00C22C1/02C22F1/186
    • The present invention provides a zirconium alloy containing 1.1-1.2 wt% of niobium, 0.01-0.2 wt% of phosphorous, 0.2-0.3 wt% of iron and a remainder made up by zirconium, and a method for manufacturing a zirconium alloy having excellent corrosion resistance performance and a resistance performance against creep deformation, the method comprising: a first step of manufacturing an ingot by dissolving the mixture which constitutes the zirconium alloy; a second step of solution heat treating the ingot manufactured in the first step at 1,000-1,050°C (β-phase interval) for 30-40 minutes, then rapidly cooling same in water and β-quenching same; a third step of preheating the ingot which was heat-treated in the second step at 630-650°C for 20-30 minutes, then hot-rolling same at a reduction ratio of 60-65%; a fourth step of performing primary intermediate vacuum heat treatment on the hot-rolled material in the third step at 570-590°C for 3-4 hours, then performing primary cold-rolling on same at a reduction ratio of 30-40%; a fifth step of performing secondary intermediate vacuum heat treatment on the primarily cold-rolled material in the fourth step at 560-580°C for 2-3 hours, then performing secondary cold-rolling on same at a reduction ratio of 50-60%; a sixth step of performing tertiary intermediate vacuum heat treatment on the secondarily cold-rolled material in the fifth step at 560-580°C for 2-3 hours, then performing tertiary cold-rolling on same at a reduction ratio of 30-40%; and a seventh step of performing final vacuum heat treatment on the tertiarily cold-rolled material in the sixth step at 440-650°C for 7-9 hours.
    • 本发明提供一种含有1.1〜1.2重量%的铌,0.01〜0.2重量%的磷,0.2〜0.3重量%的铁,剩余部分由锆构成的锆合金以及具有优异的耐腐蚀性的锆合金的制造方法 所述方法包括:第一步骤,通过溶解构成所述锆合金的所述混合物来制造锭;以及第二步骤, 第二步将第一步制得的晶锭在1000〜1050℃(β相间隔)下固溶加热处理30〜40分钟,然后在水中快速冷却并β-淬灭; 在第二步骤中将在630-650℃热处理20-30分钟的锭料预热的第三步骤,然后以60-65%的压下比率对其进行热轧; 第四步骤,在第三步骤中在570-590℃下对热轧材料进行初步中间真空热处理3-4小时,然后以30-40%的压下率对其进行初次冷轧; 第五步骤,在第四步骤中在560-580℃对所述一次冷轧材料进行二次中间真空热处理2-3小时,然后以50-60%的压下率对其进行二次冷轧, ; 第五步骤,在第五步骤中在560-580℃下对第二次冷轧材料进行第二次中间真空热处理2-3小时,然后以30-40%的压下率对其进行三次冷轧, ; 以及第六步骤,在第六步骤中对第三步骤的冷轧材料在440-650℃进行最终真空热处理7-9小时。
    • 2. 发明公开
    • SUPERBLY ANTI-CORROSIVE ZIRCONIUM ALLOY FOR NUCLEAR FUEL CLADDING AND METHOD FOR PRODUCING THE ZIRCONIUM ALLOY
    • 用于核燃料包覆的超级防腐蚀锆合金及其制造方法
    • EP3284837A1
    • 2018-02-21
    • EP15889284.4
    • 2015-05-27
    • Kepco Nuclear Fuel Co. Ltd.
    • CHOI, Min YoungMOK, Yong KyoonKIM, Yoon HoNA, Yeon SooLEE, Chung YongJANG, HunJUNG, Tae SikKO, Dae GyunLEE, Sung YongLEE, Seung JaeKIM, Jae Ik
    • C22C16/00C22F1/18B21B3/00
    • G21C3/07B22D7/005B22D21/005C22C16/00C22F1/186G21C21/10G21Y2002/103G21Y2004/10Y02E30/40
    • The purpose of the present invention is to provide a zirconium alloy composition having an improved anti-corrosion characteristic which can be utilized for nuclear fuel cladding and as material for nuclear structures, and a method for producing the zirconium alloy, the optimal heat treatment conditions being considered for the zirconium alloy, wherein tin which has a negative effect on corrosion resistance is completely eliminated from the zirconium alloy, and copper is added thereto after increasing molybdenum content to greater than the solid solubility threshold level. The zirconium alloy for nuclear fuel cladding according to the present invention comprises 0.5-1.2 wt% niobium, 0.4-0.8 wt% molybdenum, 0.1-0.15 wt% copper, 0.15-0.2 wt% iron, and the remainder in zirconium, and the method for producing the zirconium alloy for nuclear fuel cladding comprises: a first step of producing an ingot by dissolving a mixture of zirconium alloy composition elements; a second step for solution heat-treating the ingot produced in the first step for 30-40 minutes at 1,000-1,050°C (β) and then β-quenching by rapidly cooling in water; a third step for heating the ingot heat-treated in the second step for 20-30 minutes at 630-650°C and then hot-rolling at a 60-65% reduction ratio; a fourth step for a first intermediate vacuum heat treatment of the rolled material hot-rolled in the third step for 3-4 hours at 570-590°C and then cold-rolling for the first time at 30-40% reduction ratio; a fifth step for a second intermediate vacuum heat treatment of the rolled material cold-rolled for the first time in the fourth step for 2-3 hours at 560-580°C and then cold-rolling for the second time at 50-60% reduction ratio; a sixth step for a third intermediate vacuum heat treatment of the rolled material cold-rolled for the second time in the fifth step for 2-3 hours at 560-580°C and then cold-rolling for the third time at a 30-40% reduction ratio; and a seventh step for the final heat treatment of the rolled material cold-rolled for the third time in the sixth step.
    • 本发明的目的是提供一种具有改善的耐腐蚀特性的锆合金组合物,该合金组合物可用于核燃料包壳和用作核结构的材料,以及制造锆合金的方法,最佳热处理条件是 考虑用于锆合金,其中对锆合金完全消除对耐腐蚀性具有负面影响的锡,并且在将钼含量增加至大于固体溶解度阈值水平之后向其添加铜。 根据本发明的用于核燃料包壳的锆合金包含0.5-1.2重量%的铌,0.4-0.8重量%的钼,0.1-0.15重量%的铜,0.15-0.2重量%的铁,其余为锆,并且方法 用于制造用于核燃料包壳的锆合金包括:第一步,通过溶解锆合金组分元素的混合物来生产锭; 第二步,在1000-1,050℃(β)下对第一步生产的锭进行30-40分钟的固溶热处理,然后通过在水中快速冷却进行β-淬火; 第三步骤,用于在630-650℃下加热在第二步骤中热处理20-30分钟的锭块,然后以60-65%的减少比率进行热轧; 对第三步骤热轧的轧制材料进行第一次中间真空热处理的第四步骤,在570-590℃下保持3-4小时,然后以30-40%的减少率首次冷轧; 在第四步骤中第一次冷轧的轧制材料在560-580℃进行第二次中间真空热处理2-3小时,然后在50-60%第二次冷轧第二步骤, 减速比; 在第五步骤中第二次冷轧第二次中间真空热处理的第六步骤在560-580℃进行2-3小时,然后在30-40℃进行第三次冷轧 %减少率; 以及在第六步骤中第三次冷轧的轧制材料的最终热处理的第七步骤。
    • 5. 发明公开
    • METHOD FOR MANUFACTURING NUCLEAR FUEL ZIRCONIUM PART BY USING MULTI-STAGE HOT-ROLLING
    • 利用多级热轧制造核燃料锆零件的方法
    • EP3241920A1
    • 2017-11-08
    • EP16882803.6
    • 2016-01-29
    • Kepco Nuclear Fuel Co., Ltd
    • MOK, Yong KyoonKIM, Yoon HoJUNG, Tae SikLEE, Sung YongJANG, HunLEE, Chung YongNA, Yeon SooCHOI, Min YoungKO, Dae GyunLEE, Seung JaeKIM, Jae Ik
    • C22C16/00C22F1/18B21B3/00B21B37/16G21C21/00
    • C22F1/186B21B3/00B21B37/16C22C16/00C22F1/002C22F1/18G21C3/07G21C21/00
    • Disclosed is a method of manufacturing a zirconium alloy component wherein precipitates having an average size of 35 nm or less are uniformly distributed in a matrix through multi-pass hot rolling, the method including forming an ingot of a niobium-containing zirconium alloy (step 1); subjecting the ingot obtained in step 1 to annealing at a zirconium beta-phase temperature and then rapid cooling (step 2); preheating the ingot rapidly cooled in step 2 before hot rolling (step 3); forming a multi-pass hot-rolled plate by performing primary hot rolling and then air cooling during which secondary hot rolling is subsequently conducted, immediately after the preheating in step 3 (step 4); subjecting the multi-pass hot-rolled plate obtained in step 4 to primary intermediate annealing and then primary cold rolling (step 5); subjecting the rolled plate, having undergone the primary cold rolling in step 5, to secondary intermediate annealing and then secondary cold rolling (step 6); subjecting the rolled plate, having undergone the secondary cold rolling in step 6, to tertiary intermediate annealing and then tertiary cold rolling (step 7); and subjecting the rolled plate, having undergone the tertiary cold rolling in step 7, to final annealing (step 8). The zirconium alloy plate manufactured in this way enables the formation of fine precipitates in the matrix, thus improving corrosion resistance under high-temperature water vapor conditions and increasing resistance to fatigue failure.
    • 公开了一种制造锆合金部件的方法,其中平均尺寸为35nm或更小的沉淀物通过多道次热轧均匀分布在基体中,所述方法包括形成含铌锆合金锭(步骤1 ); 对步骤1中获得的锭进行锆β相温度退火,然后快速冷却(步骤2); 在热轧之前预热步骤2中快速冷却的锭(步骤3); 在步骤3(步骤4)中的预热之后立即进行一次热轧然后进行二次热轧的空冷,形成多道次热轧板; 对步骤4中得到的多道次热轧板进行一次中间退火,然后进行一次冷轧(步骤5); 对经过步骤5中的一次冷轧的轧制板进行二次中间退火和二次冷轧(步骤6); 对经过步骤6中的二次冷轧的轧制板进行三次中间退火和三次冷轧(步骤7); 并且将在步骤7中经过三次冷轧的轧制板进行最终退火(步骤8)。 以这种方式制造的锆合金板能够在基体中形成微细的沉淀物,因此提高了高温水蒸气条件下的耐腐蚀性并且提高了耐疲劳破坏性。