会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明公开
    • Light emitting diode
    • 发光二极管
    • EP0855751A2
    • 1998-07-29
    • EP97310234.6
    • 1997-12-17
    • INTERNATIONAL BUSINESS MACHINES CORPORATION
    • Bojarczuk, Nestor A., Jr.Guha, SupratikHaight, Richard Alan
    • H01L51/20H01L33/00
    • H01L33/502H01L27/153H01L33/08H01L51/0062H01L51/0077H01L51/0081H01L51/5036
    • A hybrid organic-inorganic semiconductor light emitting diode 10 comprises an electroluminescent layer 12, 14 and a photoluminescent layer 20. The electroluminescent layer is an inorganic GaN light emitting diode structure that is electroluminescent in the blue or ultraviolet (uv) region of the electromagnetic spectrum when the device is operated. The photoluminescent layer is a photoluminescent organic thin film such as tris-(8-hydroxyquinoline) Al, Alq3, deposited onto the GaN LED and which has a high photoluminescence efficiency. The uv emission from the electroluminescent region excites the Alq3 which photoluminesces in the green. Such a photoconversion results in a light emitting diode that operates in the green (in the visible range). Other colors such as blue or red may be obtained by appropriately doping the Alq3. Furthermore, other luminescent organics in addition to Alq3 may be used to directly convert the uv or blue to other wavelengths of interest. This provides the benefits of simplicity and ease of fabrication, since a complete redesign of the structure is not necessary to change emission wavelength, and the possibility for making displays by spatially varying the deposition of the emissive layer.
    • 混合有机 - 无机半导体发光二极管10包括电致发光层12,14和光致发光层20.电致发光层是无机GaN发光二极管结构,其在电磁光谱的蓝色或紫外(uv)区域中电致发光 当设备运行时。 光致发光层是沉积在GaN LED上并具有高光致发光效率的光致发光有机薄膜,例如三 - (8-羟基喹啉)Al,Alq 3。 来自电致发光区域的UV发射激发绿色光致发光的Alq3。 这种光转换产生以绿色(在可见光范围内)操作的发光二极管。 其他颜色如蓝色或红色可通过适当地掺杂Alq3来获得。 此外,除了Alq3以外,其他发光有机物也可以用于将uv或蓝色直接转换为其他感兴趣的波长。 这提供了简单和易于制造的益处,因为结构的完全重新设计对于改变发射波长是不必要的,并且可以通过在空间上改变发射层的沉积来制造显示器。
    • 4. 发明公开
    • Column III metal nitride films as phase change media for optical recording
    • 第III列金属氮化物膜用作光学记录的相变介质
    • EP0892398A3
    • 1999-02-10
    • EP98304988.3
    • 1998-06-25
    • INTERNATIONAL BUSINESS MACHINES CORPORATION
    • Bojarczuk, Nestor Alexander, Jr.Guha, SupratikGupta, ArunavaTang, Wade Wai-Chung
    • G11B7/24
    • G11B7/253G11B7/00455G11B7/0052G11B7/24G11B7/243G11B2007/2431G11B2007/24322Y10S428/913Y10S430/146Y10T428/21
    • This invention provides phase change media for optical storage based on semiconductors of nitrides of the column III metals. The surface of thin films of these wide bandgap semiconductors may be metallized (by desorption of the nitrogen) by irradiating with photons of energy equal to, or greater than the band gap of these materials, and with power densities beyond a critical threshold value. As a consequence of such writable metallization, these materials are excellent candidates for write once, read many times storage media since the differences in the reflectivity between the metal and its corresponding wide gap nitride are very large. Furthermore, once the nitrogen is desorbed, the written metallic phase can no longer revert back to the nitride phase and hence the media is stable and is truly a write-once system. Additional advantages offered by these materials over present day phase change media include higher differences in reflectivity contrast and suitability for use with short wavelength laser diodes (460 nm and lower) which are expected to be introduced into optical recording technology in the next 5 years. The band gap of alloys of nitrides of column III metals can be tuned by changing the relative fractions of the column III metals to continuously vary the band gap so as to be compatible with lasers having photon energies within the range. The low absorptivity and hence high transmissitivity, at the appropriate recording wavelength, of the starting phase also offers the potential application of these materials in a multiple-recording-layer format.
    • 本发明提供了基于III族金属氮化物半导体的光存储相变介质。 这些宽带隙半导体薄膜的表面可以通过用等于或大于这些材料的带隙的能量的光子照射并且以超过临界阈值的功率密度来金属化(通过氮的解吸)。 作为这种可写入金属化的结果,这些材料是用于一次写入,读取多次存储介质的优秀候选者,因为金属与其对应的宽间隙氮化物之间的反射率的差异非常大。 此外,一旦氮气解吸,写入的金属相不能再恢复到氮化物相,因此介质稳定并且是真正的一次写入系统。 这些材料相对于当今相变介质提供的其他优点包括反射率对比度的更高差异和适用于预计将在未来5年内引入光学记录技术的短波长激光二极管(460nm及更低)的适用性。 III族金属的氮化物合金的带隙可以通过改变III族金属的相对分数来连续改变带隙来调整,以便与具有该范围内的光子能量的激光相兼容。 在合适的记录波长下,起始相的低吸收率和高透射率也提供了这些材料在多记录层形式中的潜在应用。
    • 5. 发明公开
    • Column III metal nitride films as phase change media for optical recording
    • Filme aus Metall(III)-nitrid als Phasenwechsel-Mediumfüroptische Aufzeichnung
    • EP0892398A2
    • 1999-01-20
    • EP98304988.3
    • 1998-06-25
    • INTERNATIONAL BUSINESS MACHINES CORPORATION
    • Bojarczuk, Nestor Alexander, Jr.Guha, SupratikGupta, ArunavaTang, Wade Wai-Chung
    • G11B7/24
    • G11B7/253G11B7/00455G11B7/0052G11B7/24G11B7/243G11B2007/2431G11B2007/24322Y10S428/913Y10S430/146Y10T428/21
    • This invention provides phase change media for optical storage based on semiconductors of nitrides of the column III metals. The surface of thin films of these wide bandgap semiconductors may be metallized (by desorption of the nitrogen) by irradiating with photons of energy equal to, or greater than the band gap of these materials, and with power densities beyond a critical threshold value. As a consequence of such writable metallization, these materials are excellent candidates for write once, read many times storage media since the differences in the reflectivity between the metal and its corresponding wide gap nitride are very large. Furthermore, once the nitrogen is desorbed, the written metallic phase can no longer revert back to the nitride phase and hence the media is stable and is truly a write-once system. Additional advantages offered by these materials over present day phase change media include higher differences in reflectivity contrast and suitability for use with short wavelength laser diodes (460 nm and lower) which are expected to be introduced into optical recording technology in the next 5 years. The band gap of alloys of nitrides of column III metals can be tuned by changing the relative fractions of the column III metals to continuously vary the band gap so as to be compatible with lasers having photon energies within the range. The low absorptivity and hence high transmissitivity, at the appropriate recording wavelength, of the starting phase also offers the potential application of these materials in a multiple-recording-layer format.
    • 本发明提供了基于第三列金属的氮化物的半导体的用于光学存储的相变介质。 这些宽带隙半导体的薄膜的表面可以通过用等于或大于这些材料的带隙的能量的光子照射超过临界阈值的功率密度来金属化(通过解吸氮)。 作为这种可写入金属化的结果,由于金属与其对应的宽间隙氮化物之间的反射率的差异非常大,所以这些材料是写入一次的优异候选物,读取多次存储介质。 此外,一旦氮被解吸,写入的金属相不能再回到氮化物相,因此介质是稳定的,并且是真正的一次写入系统。 这些材料在当今相变介质中提供的另外的优点包括反射率对比度的较高差异以及在短波长激光二极管(460nm及更低)中使用的适用性,预期在未来5年内将其引入到光学记录技术中。 可以通过改变第III列金属的相对分数来连续改变带隙来调节第III列金属的氮化物的带隙,以便与具有该光子能量的激光器相兼容。 起始阶段在适当的记录波长处的低吸收率和高透射率也提供了这些材料在多层记录层格式中的潜在应用。
    • 6. 发明公开
    • Light emitting diodes
    • 发光二极管
    • EP0856896A1
    • 1998-08-05
    • EP97310233.8
    • 1997-12-17
    • INTERNATIONAL BUSINESS MACHINES CORPORATION
    • Guha, SupratikHaight, Richard AlanKarasinski, Joseph M.Troutman, Ronald R.
    • H01L51/20H01L33/00
    • H01L51/5234H01L2251/5323
    • Organic light emitting diodes having a transparent cathode structure are disclosed. The structure comprises a low work function metal in direct contact with the electron transport layer of the OLED covered by a layer of a wide bandgap semiconductor. Calcium is the preferred metal because of its relatively high optical transmissivity for a metal and because of its proven ability to form a good electron injecting contact to organic materials. ZnSe, ZnS or an alloy of these materials are the preferred semiconductors because of their good conductivity parallel to the direction of light emission, their ability to protect the underlying low work function metal and organic films and their transparency to the emitted light. Arrays of these diodes, appropriately wired, can be used to make a self-emissive display. When fabricated on a transparent substrate, such a display is at least partially transparent making it useful for heads-up display applications in airplanes and automobiles. Such a display can also be fabricated on an opaque substrate, such as silicon, in which previously fabricated devices and circuits can be used to drive the display.
    • 公开了具有透明阴极结构的有机发光二极管。 该结构包括与由宽带隙半导体层覆盖的OLED的电子传输层直接接触的低功函金属。 钙是优选的金属,因为其对于金属具有相对高的光学透射率,并且由于其证明能够与有机材料形成良好的电子注入接触。 ZnSe,ZnS或这些材料的合金是优选的半导体,因为它们具有平行于发光方向的良好导电性,它们保护下面的低功函数金属和有机膜的能力以及它们对发射光的透明度。 这些二极管的阵列,适当连线,可用于制作自发射显示器。 当制造在透明基板上时,这种显示器至少部分透明,使其可用于飞机和汽车中的抬头显示应用。 这样的显示器也可以制造在诸如硅之类的不透明基板上,其中可以使用先前制造的器件和电路来驱动显示器。
    • 7. 发明公开
    • Hetero-superlattice PN junctions
    • Übergittermit PN-Hetero-Übergang。
    • EP0555722A1
    • 1993-08-18
    • EP93101518.4
    • 1993-02-01
    • International Business Machines Corporation
    • Chang, Leroy Li-GongGuha, SupratikMunekata, Hiroo
    • H01L33/00
    • H01L33/06B82Y20/00
    • The present invention is a hetero superlattice pn junction. In particular, the invention combines n and p type superlattices (250, 200) into a single pn junction having a bandgap sufficient to create high frequency (i.e. blue or higher) light emission. Individual superlattices (250, 200) are formed using a molecular beam epitaxy process. This process creates thin layers (10, 30, 40, 60, 70, 90) of well material separated by thin layers (20, 50, 80) of barrier material. The well material is doped to create carrier concentrations and the barrier materials are chosen in combination with the thickness of the well materials to adjust the effective bandgap of the superlattice in order to create an effective wide bandgap material. The barrier material for the n and p type superlattices (250, 200) is different from the material used to form either of the two types of well layers. A particular embodiment of the present invention forms a first superlattice (250) from n type doped ZnSe well layers (10, 30) and undoped ZnMnSe barrier layers (20) and forms a second superlattice (200) from p type doped ZnTe well layers (70, 90) and undoped ZnMnSe barrier layers (80). The first and second superlattices (250, 200) are merged into a hetero superlattice pn junction. The thickness and composition of the individual well and barrier layers can be modified to adjust the effective bandgap of the pn junction. Therefore, a wide bandgap diode is formed from previously incompatible materials.
    • 本发明是异质超晶格pn结。 特别地,本发明将n型和p型超晶格(250,200)组合成具有足以产生高频(即蓝色或更高)光发射的带隙的单个pn结。 使用分子束外延法形成单个超晶格(250,200)。 该过程产生由隔离材料的薄层(20,50,80)分隔开的材料的薄层(10,30,40,60,70,90)。 掺杂阱材料以产生载流子浓度,并且与阱材料的厚度结合选择阻挡材料以调整超晶格的有效带隙,以便产生有效的宽带隙材料。 用于n型和p型超晶格(250,200)的阻挡材料与用于形成两种类型的阱层中的任一种的材料不同。 本发明的一个具体实施方案从n型掺杂的ZnSe阱层(10,30)和未掺杂的ZnMnSe阻挡层(20)形成第一超晶格(250),并从p型掺杂的ZnTe阱层形成第二超晶格(200) 70,90)和未掺杂的ZnMnSe阻挡层(80)。 第一和第二超晶格(250,200)被合并成异质超晶格pn结。 可以修改单个阱和阻挡层的厚度和组成以调节pn结的有效带隙。 因此,宽带隙二极管由先前不兼容的材料形成。