会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明公开
    • Quadrature RF surface coil for magnetic resonance imaging
    • Quadratur-RF-Oberflächenspulefürdie Magnetresonanzbildgebung
    • EP1004885A3
    • 2002-05-02
    • EP99308922.6
    • 1999-11-09
    • Marconi Medical Systems, Inc.
    • Fujita, HiroyukiBurl, MichaelMorich, Michael A.
    • G01R33/341
    • G01R33/3678
    • A magnetic imaging apparatus generates a main magnetic field longitudinally through an image region and excites magnetic resonance in selected nuclei in a patient or subject disposed in the image area. The resonating nuclei generate radio frequency magnetic resonance signals which are received by a quadrature highpass ladder surface coil (D). The highpass ladder coil includes a central leg (34) having a capacitive element (C V ) disposed symmetrically about a midpoint (44). A like number of additional legs (30, 32, 36, 38) are disposed parallel to and symmetrically on opposite side of the central leg. Side elements (40, 42) include capacitive elements (C A ) which interconnect adjacent ends of each of the legs. The capacitive elements are disposed symmetrically about the midpoint (44) and are selected such that the coil supports at least two intrinsic resonant modes including an odd mode (50) and an even mode (52). The even mode is sensitive to fields in the plane of the coil and the odd mode is sensitive to fields in a plane orthogonal to the coil.
    • 磁成像装置通过图像区域纵向地产生主磁场,并且在设置在图像区域中的患者或被摄体中的选定细胞核中激发磁共振。 谐振核产生由正交高通梯形线圈(D)接收的射频磁共振信号。 高速梯形线圈包括具有围绕中点(44)对称设置的电容元件(CV)的中心支脚(34)。 相似数量的附加腿(30,32,36,38)平行于对称地设置在中心腿的相对侧上。 侧元件(40,42)包括互连每个支腿的相邻端部的电容元件(CA)。 电容元件围绕中点(44)对称设置,并且被选择为使得线圈支持包括奇数模式(50)和偶模式(52)的至少两个固有谐振模式。 偶数模式对线圈平面中的场敏感,奇数模式对垂直于线圈的平面中的场敏感。
    • 7. 发明公开
    • Magnetic resonance imaging using a tuning circuit for the transmit coil
    • 成像通过使用调谐电路,用于在线圈的磁共振
    • EP1199577A2
    • 2002-04-24
    • EP01308866.1
    • 2001-10-18
    • Marconi Medical Sytems Finland Inc.
    • Lappalainen, Aatu Veikko Kalevi
    • G01R33/36
    • G01R33/3657G01R33/3628
    • A main magnetic field ( B 0 ) is applied through an imaging region. High power RF excitation or manipulation electrical pulses are applied to transmit coils. The transmit coil is inherently tuned to a frequency that is different from the resonance frequency of dipoles in the imaging region that are to be resonated. The transmit coil includes a reactive element (C t ) which is switched in and out of electrical communication with other inductive and capacitive portions (L), (C 0 ) of the transmit coil to change its tuning between the resonance and off-resonance frequencies. A rectifying diode (V 2 ) and a resistor are connected in parallel with the PIN diode (V 1 ) to rectify RF signals and generate a D.C. voltage across the resistor which biases the PIN diode to its conductive state. Preferably, before an RF excitation or manipulation electrical pulse is sent to the transmit coils, a tuning synthesizer (60) generates an off-resonance radio frequency pulse which is applied to the transmit coil, causing the rectifying diode and resistor to bias the PIN diode conductive, hence retune the transmit coil to the resonance frequency by the time the resonance frequency excitation or manipulation electrical signal is applied. After the radio frequency excitation or manipulation pulse is terminated, the PIN diode (V 1 ) switches non-conductive detuning through transmit coil. When the transmit coil is detuned, it does not interfere with a receive only coil (50) as it receives resonance signals from the resonating dipoles in the imaging region.
    • 主磁场(B 0)通过适用于成像区域。 高功率射频激励或操纵的电脉冲被施加到发射线圈。 发射线圈被固有调谐到的频率确实是从偶极子中那样将被共振成像区域的共振频率不同。 发射线圈包括被进出交换电通信的与所述发射线圈的其它电感性和电容部(L),(C 0),以改变共振频率之间和偏共振其调谐电抗元件(CT)所有。 的整流二极管,(V2)和电阻并联连接PIN二极管(V1),以纠正所述RF信号,并产生一个直流 跨越其偏置,PIN二极管,以它的导通状态电阻的电压。 优选地,前RF激励或操纵的电脉冲的合成器被发送到发射线圈,调谐(60)基因在偏共振的射频脉冲速率的所有被施加到发射线圈,使所述整流二极管和电阻,以偏置的PIN二极管 导电的,因此,通过谐振频率激励或操纵的电信号的施加时间重新调谐发射线圈的谐振频率。 射频激励脉冲或操纵结束后,PIN二极管(V1)通过切换发射线圈其他非导电性失谐。 当发射线圈失谐,它不与一个只接收线圈(50),因为它接收来自于所述成像区中的共振的偶极子的共振信号干扰。
    • 8. 发明公开
    • Diagnostic imaging
    • 诊断Bilderzeugung
    • EP1182613A2
    • 2002-02-27
    • EP01306563.6
    • 2001-07-31
    • Marconi Medical Systems, Inc.
    • Liu, KechengMargosian, Paul M.
    • G06T11/00
    • G06T11/206
    • A diagnostic imaging system (100) and method generates a plurality of temporally resolved volume image representations (130, 132, ..., 134). A time course projection processor (140) temporally collapses the volume image representations. A spatial projection processor (146) performs a maximum or minimum intensity process along rays through voxels of a three-dimensional image representation. By sequentially temporally collapsing and maximum or minimum intensity projecting, in either order, the plurality of temporally resolved volume image representations is reduced to a two-dimensional temporally collapsed and spatially projected image representation (148) . In preferred embodiments, the present invention is directed to angiography, and more preferably to magnetic resonance angiography. In certain embodiments, time course information, such as blood flow rate information, vessel wall dynamics, contrast agent propagation, contrast agent peak arrival time, and the like, is logged in a database, providing additional diagnostic information or timing information for future reference. In this manner, more accurate images of vessel lumina, as well as blood flow time variant effects, are obtained.
    • 诊断成像系统(100)和方法产生多个时间分辨的体积图像表示(130,132,...,134)。 时间投影处理器(140)暂时压缩音量图像表示。 空间投影处理器(146)沿着三维图像表示的体素的光线执行最大或最小强度处理。 通过顺序时间折叠和最大或最小强度投影,以任一顺序,多个时间分辨的体积图像表示被减少到二维时间折叠和空间投影的图像表示(148)。 在优选实施方案中,本发明涉及血管造影术,更优选磁共振血管造影术。 在某些实施例中,记录在数据库中的时间过程信息,例如血液流量信息,血管壁动力学,造影剂传播,造影剂峰值到达时间等,提供用于将来参考的附加诊断信息或定时信息。 以这种方式,获得血管腔的更精确的图像以及血流时间变化的效果。
    • 9. 发明公开
    • External patient contouring
    • Externe Patientenprofilierung
    • EP1176558A2
    • 2002-01-30
    • EP01305805.2
    • 2001-07-05
    • Marconi Medical Systems, Inc.
    • Steckner, MichaelRuohonen, Jarmo O.Demeester, Gordon D.Carlson, Robert K.
    • G06T7/00
    • G06K9/3216G06K2209/05G06T7/33G06T2207/10028G06T2207/10088G06T2207/30096
    • An open MRI or other diagnostic imaging system ( A ) generates a three-dimensional diagnostic image representation, which is stored in an MRI image memory (26). A laser scanner or other surface imaging system (B) generates a volumetric surface image representation that is stored in a surface image memory ( 34 ). Typically, the volume and surface images are misaligned and the magnetic resonance image may have predictable distortions. An image correlating system ( C ) determines offset, scaling, rotational, and non-linear corrections to the magnetic resonance image representation, which are implemented by an image correction processor ( 48 ). The corrected magnetic resonance image representation and the surface image representation are combined ( 50 ) and stored in a superimposed image memory ( 52 ). A video processor ( 54 ) generates image representations from selected portions of the superimposed image representation for display on a human-readable monitor ( 56 ).
    • 开放MRI或其它诊断成像系统(A)产生存储在MRI图像存储器(26)中的三维诊断图像表示。 激光扫描仪或其他表面成像系统(B)产生存储在表面图像存储器(34)中的体积表面图像表示。 通常,体积和表面图像不对准,并且磁共振图像可能具有可预测的失真。 图像相关系统(C)确定由图像校正处理器(48)实现的磁共振图像表示的偏移,缩放,旋转和非线性校正。 将校正的磁共振图像表示和表面图像表示组合(50)并存储在叠加图像存储器(52)中。 视频处理器(54)从叠加的图像表示的选定部分生成图像表示,以在人类可读监视器(56)上显示。
    • 10. 发明公开
    • Image reconstruction in tomography
    • 图像重建为成像的方法
    • EP1006370A3
    • 2002-01-16
    • EP99309336.8
    • 1999-11-23
    • Marconi Medical Systems, Inc.
    • Hawkins, William G.Gagnon, Daniel
    • G01T1/29
    • G01T1/1615A61B6/037G01T1/2985
    • A method of ML-EM image reconstruction is provided for use in connection with a diagnostic imaging apparatus ( 10 ) that generates projection data. The method includes collecting projection data, including measured emission projection data. An initial emission map and attenuation map are assumed. The emission map and the attenuation map are iteratively updated. With each iteration, the emission map is recalculated by taking a previous emission map and adjusting it based upon: (i) the measured emission projection data; (ii) a reprojection of the previous emission map which is carried out with a multi-dimensional projection model; and, (iii) a reprojection of the attenuation map. As well, with each iteration, the attenuation map is recalculated by taking a previous attenuation map and adjusting it based upon: (i) the measured emission projection data; and, (ii) a reprojection of the previous emission map which is carried out with the multi-dimensional projection model. In a preferred embodiment, with source-assisted reconstruction, the recalculation of the attenuation map is additionally based upon: (iii) measured transmission projection data; and (iv) a reference or blank data set of measured transmission projection data taken without the subject present in the imaging apparatus ( 10 ).