会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 41. 发明公开
    • DETECTION TECHNIQUES
    • ERKENNUNGSVERFAHREN
    • EP2828683A1
    • 2015-01-28
    • EP13713471.4
    • 2013-03-14
    • Qinetiq Limited
    • DAWBER, William Nicholas
    • G01S13/58G01S13/28
    • G01S13/28G01S13/581
    • This application describes techniques that mitigate the problems of range walk where fast moving objects are detected using pulsed target detection systems having relatively long dwell times. A pulse generator ( 102) for a pulsed target detection system (101 ) is disclosed which controls generation of a series of pulses (104) to be transmitted by the target detection system. The time between pulses and pulse characteristics are controlled such that any range migration due to target (107) movement in the time between pulses of said series is substantially equal and opposite to any variation in range-Doppler coupling between the pulses due to said target movement. By controlling the transmitted pulses in this way any potential variation in range cell due to target motion is offset by an equal and opposite variation in range- Doppler coupling, whatever the target radial velocity (
      v ). The techniques are particularly applicable to radar systems.
    • 一些实施例涉及减轻使用具有较长驻留时间的脉冲目标检测系统来检测快速移动物体的距离行走问题的技术。 用于脉冲目标检测系统的脉冲发生器控制由目标检测系统传输的一系列脉冲的产生。 控制脉冲和脉冲特性之间的时间,使得由于所述串联的脉冲之间的时间内的目标移动而导致的任何范围偏移基本相等并且与由于所述目标运动引起的脉冲之间的范围 - 多普勒耦合的任何变化相反。 通过以这种方式控制发射的脉冲,无论目标径向速度如何,在距离多普勒耦合中,由于目标运动引起的距离单元中的任何潜在的变化被偏移了范围 - 多普勒耦合的相等和相反的变化。 这些技术特别适用于雷达系统。
    • 42. 发明公开
    • RADAR APPARATUS AND RADAR SIGNAL PROCESSING METHOD
    • 雷达装置和雷达信号处理方法
    • EP2821808A1
    • 2015-01-07
    • EP13755485.3
    • 2013-02-27
    • Tokyo Keiki Inc.
    • MIMURA, ToruNANMOKU, Shinichi
    • G01S7/02G01S13/28
    • G01S13/76G01S7/023G01S7/2923G01S13/22G01S13/28G01S13/767
    • A radar apparatus using a pulse compression technique, in which any automatic response signals are prevented from creating false radar images on the indicator screen of the radar apparatus.
      An antenna repeats a transmit/receive cycle at a second time interval while rotating, in which i) a non-modulated pulse is transmitted, ii) a modulated pulse is transmitted a first time interval after the transmission of the non-modulated pulse, and iii) an echo and/or an automatic response signal occurring after the pulse transmission is received. For each transmit/receive cycle, a first separated receive signal having a frequency band corresponding to that of the modulated pulse and a second separated receive signal having a frequency band corresponding to that of the non-modulated pulse are separated. An elimination process is applied to the first separated receive signal, in which respective first separated receive signals for two consecutive transmit/receive cycles are compared and any signal component having discontinuity between two consecutive transmit/receive cycles is eliminated from the first separated receive signal. A pulse compression process is applied to the first separated receive signal having undergone the elimination process. The first separated receive signal having undergone the pulse compression process is combined with the second separated receive signal.
    • 一种使用脉冲压缩技术的雷达装置,其中防止任何自动响应信号在雷达装置的指示器屏幕上产生错误的雷达图像。 天线在旋转的同时以第二时间间隔重复发射/接收周期,其中i)发射未调制的脉冲,ii)在发射未调制的脉冲之后的第一时间间隔发射已调制的脉冲,以及 iii)在接收到脉冲传输之后发生的回波和/或自动响应信号。 对于每个发送/接收周期,分离具有与调制脉冲的频带相对应的频带的第一分离接收信号和具有与非调制脉冲的频带相对应的频带的第二分离接收信号。 将消除过程应用于第一分离的接收信号,其中比较两个连续的发射/接收周期的各自的第一分离的接收信号,并且从第一分离的接收信号中消除在两个连续的发射/接收周期之间具有不连续性的任何信号分量。 对经过消除处理的第一分离接收信号应用脉冲压缩处理。 已经经过脉冲压缩过程的第一分离的接收信号与第二分离的接收信号组合。
    • 43. 发明公开
    • SECONDARY SURVEILLANCE RADAR SYSTEM FOR AIR TRAFFIC CONTROL
    • SekundäresÜberwachungsradarsystemzur Luftverkehrskontrolle
    • EP2440950A1
    • 2012-04-18
    • EP10725117.5
    • 2010-06-10
    • Thales Deutschland GmbH
    • PAWLITZKI, Alexander
    • G01S13/78G01S7/00G01S13/87
    • G01S13/781G01S7/003G01S7/023G01S13/24G01S13/28G01S13/878
    • The invention refers to a secondary surveillance radar, referred to hereinafter as SSR, system (1) for air traffic control. The SSR-system (1) comprises a plurality of secondary radar stations (2) and is adapted for determining a location of an air traffic vehicle within the range of coverage of at least some of the secondary radar stations (2) by means of propagation time measurement of data signals (8) transmitted between the secondary radar stations (2) and a transponder (9) of the air traffic vehicle. Each of the secondary radar stations (2) works on a synchronized local time base. In order to provide for a high-precision synchronisation of the radar stations (2) of the SSR system (1) free of clusters, it is suggested that an SSR system's (1) secondary radar station (2) is synchronized depending on the content of synchronisation signals (10) received by the secondary radar station (2) to be synchronized and broadcast by one of the other secondary radar stations (2) of the SSR system (1). Preferably, the content comprises a time of transmission of the synchronisation signal (10).
    • 本发明涉及一种二次监视雷达,以下称为SSR,用于空中交通管制的系统(1)。 SSR系统(1)包括多个次级雷达站(2),并且适于通过传播来确定空中交通车辆在至少一些次级雷达站(2)的覆盖范围内的位置 在二级雷达站(2)和空中交通车辆的应答器(9)之间传输的数据信号(8)的时间测量。 每个二级雷达站(2)在同步的本地时基上工作。 为了提供无集群的SSR系统(1)的雷达站(2)的高精度同步,建议SSR系统(1)二级雷达站(2)根据内容进行同步 的同步信号(10)由所述辅助雷达站(2)接收以被所述SSR系统(1)的其他二级雷达站(2)之一同步和广播。 优选地,内容包括发送同步信号(10)的时间。
    • 49. 发明公开
    • Low visibility imaging radar system
    • Bilderzeugungsradarsystem zur Verwendung bei schlechter Sicht
    • EP0690316A1
    • 1996-01-03
    • EP95110304.3
    • 1995-06-30
    • Hughes Aircraft Company
    • Hui, Leo H.
    • G01S13/89G01S13/86G01S7/04
    • G01S13/86G01S7/04G01S7/295G01S13/28G01S13/89G01S13/913G01S13/9303
    • An imaging radar system (10) comprising a forward-looking millimeter-wave radar system (10) for use in low visibility environments. The imaging radar system (10) comprises an antenna (11), a transceiver (12), a processor (13), and a display system (20). The transceiver (12) comprises a transmitter (14), a frequency reference unit (14a), and an RF receiver (15). The processor (13) comprises an IF receiver (16), an analog-to-digital converter (16a), a signal processor (17), a timing generator (18), input/output circuitry (18a) for interfacing with external systems (23, 24, 25), and a data processor (19). The display system (20) comprises a head-up or head-down display (21) and control circuitry (22). Several external systems (23, 24, 25) are coupled by way of the input/output circuitry (18a) to the data processor (19), including aircraft avionics, inertial reference, and data acquisition systems. Radar returns are amplified and downconverted to a lower intermediate frequency by the RF receiver (15) and downconverted to video frequencies in the IF receiver (16). The returns are sampled and digitized by the analog-to-digital converter (16a) and processed by the signal processor (17) using digital techniques to improve the range and azimuth resolution of the signal and provide corrections for geometry-dependent gain effects. The signal processor (17) transforms the data from range versus azimuth coordinates into azimuth versus elevation coordinates and sends the data to the display system (20) for display. The data processor (19) processes avionics data, inertial reference data, and system control signals from the external systems (23, 24, 25), and determines configuration and timing data for the system, and processing parameters for the signal processor (17).The data acquisition system (25) interacts with the signal and data processors (17, 19) to provide controls for testing and to receive data for storage. The present radar system (10) may be used for landing, takeoff, and taxi applications in low visibility environments.
    • 一种成像雷达系统(10),包括用于低可见度环境的前视毫米波雷达系统(10)。 成像雷达系统(10)包括天线(11),收发器(12),处理器(13)和显示系统(20)。 收发器(12)包括发射机(14),频率参考单元(14a)和RF接收机(15)。 处理器(13)包括IF接收器(16),模拟 - 数字转换器(16a),信号处理器(17),定时发生器(18),用于与外部系统接口的输入/输出电路 (23,24,25)和数据处理器(19)。 显示系统(20)包括平视或俯视显示器(21)和控制电路(22)。 几个外部系统(23,24,25)通过输入/输出电路(18a)耦合到数据处理器(19),包括飞行器航空电子设备,惯性参考和数据采集系统。 雷达返回被RF接收机(15)放大并下变频到较低的中频,并下变频到IF接收机(16)中的视频。 返回值由模数转换器(16a)采样和数字化,并由信号处理器(17)使用数字技术进行处理,以改进信号的范围和方位分辨率,并为几何依赖增益效应提供校正。 信号处理器(17)将数据从范围与方位坐标变换为方位角与高程坐标,并将数据发送到显示系统(20)以进行显示。 数据处理器(19)处理来自外部系统(23,24,25)的航空电子数据,惯性参考数据和系统控制信号,并确定系统的配置和定时数据,以及信号处理器(17)的处理参数, 数据采集​​系统(25)与信号和数据处理器(17,19)进行交互,以提供用于测试和接收存储数据的控制。 本雷达系统(10)可用于低可见度环境中的着陆,起飞和出租车应用。
    • 50. 发明公开
    • Radar processor with range sidelobe reduction following doppler filtering
    • 具有多普勒过滤功能的雷达放大器的雷达处理器
    • EP0509842A3
    • 1993-05-12
    • EP92303497.9
    • 1992-04-16
    • GENERAL ELECTRIC COMPANY
    • Urkowitz, Harry
    • G01S13/28G01S13/42G01S13/524G01S13/87G01S7/282
    • G01S7/032G01S13/22G01S13/28G01S13/426G01S13/582H01Q3/26H01Q21/22
    • A multipurpose system provides radar surveillance for air traffic control purposes. The system includes four separate active phased-array antennas, each with ± 45° coverage in azimuth, from 0° to 60° in elevation. Each antenna element of each phased-array antenna is coupled by a low-loss path to the solid-state amplifier associated with a transmit-receive (TR) module. Each antenna produces a sequence of pencil beams, which requires less transmitted power from the TR modules than a fan beam, but requires more time because the pencil beam must be sequenced to cover the same volume as the fan beam. In order to scan the volume in a short time, the PRF is responsive to the elevation angle of the beam, so higher elevation angles use a higher PRF. Low elevation angle beams receive long transmitter pulses for high power, and pulse compression is used to restore range resolution, but the long pulse results in a large minimum range within which targets cannot be detected. A second scan is provided at low elevation angles with a short transmitter pulse to fill in the short-range coverage. Beams at higher elevation angles transmit pulse widths which are shorter than beams at low elevation angles, so that the minimum range requirement is met without a second scan, which also reduces the time required for volumetric scan. The number of pulses which are integrated to produce a return increases off-axis, to restore system margin lost due to off-axis power gain reduction. The volumetric scan rate is increased by a dynamic scan regimen by which subsets of beams are pulsed with a high transmitter PRF but with a low effective beam PRF to reduce range ambiguity and preserve Doppler resolution without the usual increase of scan time. For best range resolution, Doppler processing is used, with range sidelobe pulse suppression applied separately to each Doppler frequency bin.