会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明公开
    • A Turbine Provided with Data for Parameter Improvement
    • US20240117791A1
    • 2024-04-11
    • US18276229
    • 2022-02-09
    • Wind Farm Analytics Ltd.
    • Theodore HOLTOM
    • F03D17/00
    • F03D17/011F03D17/003
    • Turbines, including fluid driven turbines, including wind turbines, do not always operate to their maximum capability due to sub-optimal selection of various possible parameters. Therefore there is industrial advantage in systems which can calculate, adjust or constrain such parameters in order to improve the productivity of turbines. New data also allows for new control methodologies. Such systems may be established through the provision of relevant data. The overall productivity of turbines may be improved, or increased, by extending the lifetime of the turbine, or by increasing the average power output during its lifetime, or reducing maintenance costs. One particular example of turbine under-performance has been observed by the present author for wind turbines operating in hilly terrain such as frequently found on Scottish wind farms but also in many locations around the world. Hilly terrain, or complex terrain, results in complex wind flow and energy production losses when control systems are not best designed to handle such flow. Although complex flow may arise for other reasons, such as complex weather or storms (both onshore and offshore), the complex flow due to complex terrain is always present for many turbines and therefore impacts productivity throughout their operational lifetime. Complex fluid flow data may be measured by instruments including converging beam Doppler LIDAR which is especially advantageous in providing three-dimensional fluid velocity data. Therefore the provision of data allows for control parameter adjustment to account for operational variables including fluid characteristics. Therefore the control parameters may be adjusted in order to better control a turbine for its local conditions. This allows for greater generation of renewable energy. Derivations thereof may also be applied to improve operational parameters of vehicles, including vehicles incorporating a rotor, as well as aircraft and spacecraft launching or operating within a fluid. This offers better vehicle control and improved safety.