会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Methods and apparatus for visual search
    • 视觉搜索的方法和装置
    • US08805116B2
    • 2014-08-12
    • US13434061
    • 2012-03-29
    • Zhe LinJonathan W. Brandt
    • Zhe LinJonathan W. Brandt
    • G06F9/00G06F17/30G06K9/46
    • G06F17/30262G06F17/3025G06K9/4676
    • For each image of a set of images, the each image is characterized with a set of fixed-orientation texture descriptors and a set of color descriptors. The set of images is indexed in a color index and a texture index. Similarly, a query image is characterized with a set of fixed-orientation texture descriptors. The set of fixed orientation texture descriptors of the query image includes a set of fixed orientation descriptors for each of a set of rotated query images, and a set of color descriptors of the query image. A rotated local Bag-of-Features (BoF) operation is performed upon the set of rotated query images and the set of images. Each of the set of images is ranked based on the rotated local Bag-of-Features operation.
    • 对于一组图像的每个图像,每个图像用一组固定方向纹理描述符和一组颜色描述符来表征。 该图像集合以颜色索引和纹理索引为索引。 类似地,查询图像用一组固定方向纹理描述符来表征。 查询图像的固定方向纹理描述符的集合包括用于一组旋转查询图像中的每一个的一组固定方位描述符和查询图像的一组颜色描述符。 在旋转的查询图像和图像集合上执行旋转的局部特征(BoF)操作。 基于旋转的本地Bag-of-Features操作对该组图像中的每一个进行排名。
    • 2. 发明申请
    • Image Search by Query Object Segmentation
    • 通过查询对象分割的图像搜索
    • US20140089326A1
    • 2014-03-27
    • US13624615
    • 2012-09-21
    • Zhe LinJonathan W. Brandt
    • Zhe LinJonathan W. Brandt
    • G06F17/30
    • G06F17/30259
    • Query object localization, segmentation, and retrieval are disclosed. A query image may be received that includes a query object. Based on respective spatially constrained similarity measures between the query image and a plurality of images from an image database, at least some of the plurality of images may be identified and/or retrieved and a location of the query object in the query image may be estimated. The query object may then be automatically segmented from the query image based on the estimated query object location. In some embodiments, the retrieval, localization and/or segmentation may be iterated.
    • 公开了查询对象的定位,分割和检索。 可以接收包括查询对象的查询图像。 基于来自图像数据库的查询图像和多个图像之间的相应的空间约束相似性度量,可以识别和/或检索多个图像中的至少一些图像,并且可以估计查询图像中查询对象的位置 。 然后可以基于估计的查询对象位置从查询图像中自动地分割查询对象。 在一些实施例中,可重复检索,定位和/或分割。
    • 3. 发明申请
    • Methods and Apparatus for Visual Search
    • 视觉搜索的方法和装置
    • US20130121600A1
    • 2013-05-16
    • US13434028
    • 2012-03-29
    • Zhe LinJonathan W. Brandt
    • Zhe LinJonathan W. Brandt
    • G06K9/62
    • G06F17/30262G06F17/3025G06K9/4676
    • Each image of a set of images is characterized with a set of sparse feature descriptors and a set of dense feature descriptors. In some embodiments, both the set of sparse feature descriptors and the set of dense feature descriptors are calculated based on a fixed rotation for computing texture descriptors, while color descriptors are rotation invariant. In some embodiments, the descriptors of both sparse and dense features are then quantized into visual words. Each database image is represented by a feature index including the visual words computed from both sparse and dense features. A query image is characterized with the visual words computed from both sparse and dense features of the query image. A rotated local Bag-of-Features (BoF) operation is performed upon a set of rotated query images against the set of database images. Each of the set of images is ranked based on the rotated local Bag-of-Features operation.
    • 一组图像的每个图像用一组稀疏特征描述符和一组密集特征描述符来表征。 在一些实施例中,基于用于计算纹理描述符的固定旋转来计算稀疏特征描述符集合和密集特征描述符集合,而颜色描述符是旋转不变量。 在一些实施例中,稀疏和密集特征的描述符然后被量化为视觉词。 每个数据库图像由特征索引表示,包括从稀疏和密集特征计算的视觉词。 查询图像的特征在于从查询图像的稀疏和密集特征计算的视觉词。 一组旋转的本地特征(BoF)操作是针对一组数据库图像进行旋转的查询图像执行的。 基于旋转的本地Bag-of-Features操作对该组图像中的每一个进行排名。
    • 5. 发明授权
    • Image search by query object segmentation
    • 通过查询对象分割进行图像搜索
    • US08880563B2
    • 2014-11-04
    • US13624615
    • 2012-09-21
    • Zhe LinJonathan W. Brandt
    • Zhe LinJonathan W. Brandt
    • G06F17/30G06K9/00
    • G06F17/30259
    • Query object localization, segmentation, and retrieval are disclosed. A query image may be received that includes a query object. Based on respective spatially constrained similarity measures between the query image and a plurality of images from an image database, at least some of the plurality of images may be identified and/or retrieved and a location of the query object in the query image may be estimated. The query object may then be automatically segmented from the query image based on the estimated query object location. In some embodiments, the retrieval, localization and/or segmentation may be iterated.
    • 公开了查询对象的定位,分割和检索。 可以接收包括查询对象的查询图像。 基于来自图像数据库的查询图像和多个图像之间的相应的空间约束相似性度量,可以识别和/或检索多个图像中的至少一些图像,并且可以估计查询图像中查询对象的位置 。 然后可以基于估计的查询对象位置从查询图像中自动地分割查询对象。 在一些实施例中,可重复检索,定位和/或分割。
    • 6. 发明申请
    • Methods and Apparatus for Visual Search
    • 视觉搜索的方法和装置
    • US20130121570A1
    • 2013-05-16
    • US13434061
    • 2012-03-29
    • Zhe LinJonathan W. Brandt
    • Zhe LinJonathan W. Brandt
    • G06K9/46
    • G06F17/30262G06F17/3025G06K9/4676
    • For each image of a set of images, the each image is characterized with a set of fixed-orientation texture descriptors and a set of color descriptors. The set of images is indexed in a color index and a texture index. Similarly, a query image is characterized with a set of fixed-orientation texture descriptors. The set of fixed orientation texture descriptors of the query image includes a set of fixed orientation descriptors for each of a set of rotated query images, and a set of color descriptors of the query image. A rotated local Bag-of-Features (BoF) operation is performed upon the set of rotated query images and the set of images. Each of the set of images is ranked based on the rotated local Bag-of-Features operation.
    • 对于一组图像的每个图像,每个图像用一组固定方向纹理描述符和一组颜色描述符来表征。 该图像集合以颜色索引和纹理索引为索引。 类似地,查询图像用一组固定方向纹理描述符来表征。 查询图像的固定方向纹理描述符的集合包括用于一组旋转查询图像中的每一个的一组固定方位描述符和查询图像的一组颜色描述符。 在旋转的查询图像和图像集合上执行旋转的局部特征(BoF)操作。 基于旋转的本地Bag-of-Features操作对该组图像中的每一个进行排名。
    • 7. 发明申请
    • OBJECT RETRIEVAL AND LOCALIZATION USING A SPATIALLY-CONSTRAINED SIMILARITY MODEL
    • 使用空间约束相似模型的对象检索和本地化
    • US20130060765A1
    • 2013-03-07
    • US13552595
    • 2012-07-18
    • Zhe LinJonathan W. BrandtXiaohui Shen
    • Zhe LinJonathan W. BrandtXiaohui Shen
    • G06F17/30
    • G06F17/30259G06F17/3025G06F17/30256G06F17/30262G06F17/30265G06F17/3028G06K9/4676G06K9/6211G06K9/6212G06Q30/02
    • Methods, apparatus, and computer-readable storage media for object retrieval and localization that employ a spatially-constrained similarity model. A spatially-constrained similarity measure may be evaluated by a voting-based scoring technique. Object retrieval and localization may thus be achieved without post-processing. The spatially-constrained similarity measure may handle object rotation, scaling and view point change. The similarity measure can be efficiently calculated by the voting-based method and integrated with inverted files. The voting-based scoring technique may simultaneously retrieve and localize a query object in a collection of images such as an image database. The object retrieval and localization technique may, for example, be implemented with a k-nearest neighbor (k-NN) re-ranking method in or as a retrieval method, system or module. The k-NN re-ranking method may be applied to improve query results of the object retrieval and localization technique.
    • 用于采用空间约束相似性模型的对象检索和定位的方法,装置和计算机可读存储介质。 空间约束的相似性度量可以通过基于投票的评分技术来评估。 因此可以在不进行后处理的情况下实现对象检索和定位。 空间约束的相似性度量可以处理对象旋转,缩放和观察点变化。 相似性度量可以通过基于投票的方法有效地计算并与反转文件集成。 基于投票的评分技术可以同时检索和定位诸如图像数据库的图像集合中的查询对象。 对象检索和定位技术可以例如在k取最近邻(k-NN)重排序方法中,或者作为检索方法,系统或模块来实现。 可以应用k-NN重排法来改善对象检索和定位技术的查询结果。
    • 10. 发明授权
    • Methods and apparatus for visual search
    • 视觉搜索的方法和装置
    • US08781255B2
    • 2014-07-15
    • US13434028
    • 2012-03-29
    • Zhe LinJonathan W. Brandt
    • Zhe LinJonathan W. Brandt
    • G06K9/00
    • G06F17/30262G06F17/3025G06K9/4676
    • Each image of a set of images is characterized with a set of sparse feature descriptors and a set of dense feature descriptors. In some embodiments, both the set of sparse feature descriptors and the set of dense feature descriptors are calculated based on a fixed rotation for computing texture descriptors, while color descriptors are rotation invariant. In some embodiments, the descriptors of both sparse and dense features are then quantized into visual words. Each database image is represented by a feature index including the visual words computed from both sparse and dense features. A query image is characterized with the visual words computed from both sparse and dense features of the query image. A rotated local Bag-of-Features (BoF) operation is performed upon a set of rotated query images against the set of database images. Each of the set of images is ranked based on the rotated local Bag-of-Features operation.
    • 一组图像的每个图像用一组稀疏特征描述符和一组密集特征描述符来表征。 在一些实施例中,基于用于计算纹理描述符的固定旋转来计算稀疏特征描述符集合和密集特征描述符集合,而颜色描述符是旋转不变量。 在一些实施例中,稀疏和密集特征的描述符然后被量化为视觉词。 每个数据库图像由特征索引表示,包括从稀疏和密集特征计算的视觉词。 查询图像的特征在于从查询图像的稀疏和密集特征计算的视觉词。 一组旋转的本地特征(BoF)操作是针对一组数据库图像进行旋转的查询图像执行的。 基于旋转的本地Bag-of-Features操作对该组图像中的每一个进行排名。