会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • REPUTATION SCORING
    • 信誉评分
    • US20090070130A1
    • 2009-03-12
    • US12107250
    • 2008-04-22
    • Neelakantan SundaresanZeqian Shen
    • Neelakantan SundaresanZeqian Shen
    • G06Q99/00
    • G06Q30/06G06Q50/01
    • In one example embodiment, a system and method is shown that includes receiving a feedback score relating to a transaction engaged in by a user. The system and method also includes applying a weight to the feedback score based on weighting criteria to create a weighted feedback score. Further, generating a reputation score for the user based on the weighted feedback score may also be implemented. In an additional example embodiment, the system and method includes identifying a reputation score relating at least one neighbor of a user, the at least one neighbor of the user including another user with whom the user has engaged in a transaction. Further, the system and method includes ordering the reputation score relating to at least one neighbor of the user to create an ordered reputation score. Moreover, the system and method includes displaying the ordered reputation score.
    • 在一个示例实施例中,示出了系统和方法,其包括接收与由用户参与的交易相关的反馈分数。 该系统和方法还包括基于权重标准对反馈得分应用权重以产生加权反馈得分。 此外,还可以实现基于加权反馈得分为用户生成信誉分数。 在另一示例实施例中,系统和方法包括识别与用户的至少一个邻居相关联的信誉评分,该用户的至少一个邻居包括用户已经从事交易的另一用户。 此外,系统和方法包括对与用户的至少一个邻居相关的信誉评分进行排序以创建有序的信誉评分。 此外,该系统和方法包括显示有序的信誉评分。
    • 7. 发明授权
    • Method and system for social network analysis
    • 社交网络分析方法与系统
    • US08473422B2
    • 2013-06-25
    • US12957327
    • 2010-11-30
    • Zeqian ShenNeelakantan Sundaresan
    • Zeqian ShenNeelakantan Sundaresan
    • G06Q99/00G06Q30/00G06F15/173
    • G06Q50/01G06Q30/02G06Q30/0601
    • Methods and system for social commerce network analysis are described. In one embodiment, a strongly connected component value, an in-component value, an out-component value, a disconnected component value, a tendril value, and a tube value of a social network for a time period may be accessed. A social strength of the social network for the time period may be calculated by combining the strongly connected component value, the in-component value, the out-component value, the disconnected component value, the tendril value, and the tube value. The social strength of the social network for the time period may be utilized for analysis of the social network. The strongly connected component value may have a greatest weight and the disconnected component value may have the lowest weight in the combining.
    • 描述社会商务网络分析的方法和系统。 在一个实施例中,可以访问在一段时间内的强连接分量值,组分内值,外分量值,断开分量值,卷积值和社交网络的管值。 可以通过组合强连接的分量值,组成成分值,外分量值,断开分量值,卷积值和管值来计算该时间段中的社交网络的社会力量。 社会网络在社会网络中的社会实力可以用于社会网络的分析。 强连接分量值可能具有最大的权重,并且断开的分量值可能具有组合中的最小权重。
    • 10. 发明申请
    • METHOD AND SYSTEM FOR SOCIAL NETWORK ANALYSIS
    • 社会网络分析方法与系统
    • US20110071953A1
    • 2011-03-24
    • US12957327
    • 2010-11-30
    • Zeqian ShenNeelakantan Sundaresan
    • Zeqian ShenNeelakantan Sundaresan
    • G06Q10/00G06Q30/00
    • G06Q50/01G06Q30/02G06Q30/0601
    • Methods and system for social commerce network analysis are described. In one embodiment, a strongly connected component value, an in-component value, an out-component value, a disconnected component value, a tendril value, and a tube value of a social network for a time period may be accessed. A social strength of the social network for the time period may be calculated by combining the strongly connected component value, the in-component value, the out-component value, the disconnected component value, the tendril value, and the tube value. The social strength of the social network for the time period may be utilized for analysis of the social network. The strongly connected component value may have a greatest weight and the disconnected component value may have the lowest weight in the combining.
    • 描述社会商务网络分析的方法和系统。 在一个实施例中,可以访问在一段时间内的强连接分量值,组分内值,外分量值,断开分量值,卷积值和社交网络的管值。 可以通过组合强连接的分量值,组成成分值,外分量值,断开分量值,卷积值和管值来计算该时间段中的社交网络的社会力量。 社会网络在社会网络中的社会实力可以用于社会网络的分析。 强连接分量值可能具有最大的权重,并且断开的分量值可能具有组合中的最小权重。