会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Laser activation of implanted contact plug for memory bitline fabrication
    • 用于存储器位线制造的植入接触插塞的激光激活
    • US20060160343A1
    • 2006-07-20
    • US11039429
    • 2005-01-20
    • Yung ChongDong SohnLiang Hsia
    • Yung ChongDong SohnLiang Hsia
    • H01L21/3205
    • H01L27/105H01L21/28512H01L21/76897H01L27/11568H01L27/11573H01L29/665H01L29/7833
    • An example method of forming a bitline contact region and bitline contact plug for a memory device using a laser irradiation activation process. An example embodiment comprises: providing a substrate having a logic region and a SONOS memory region. We form in the memory region, a memory transistor comprised of a memory gate dielectric, a memory gate electrode, memory LDD regions, memory spacers on the sidewalls of the memory gate electrode. We then perform a “memory Cell Source Line” implant to form a memory source line in the memory region adjacent to the memory gate electrode. We form silicide over the memory gate electrode and on the memory source line. We form an ILD dielectric layer over the substrate surface. We form a contact opening in the ILD dielectric layer over the memory Drain in the memory area. We etch an opening in the substrate in the drain region adjacent to the memory gate electrode. The opening exposes the memory cell first well and exposes the memory drain on the sidewall of the opening. We perform a bitline contact plug implant to from a doped contact region under the opening. We activate the doped contact region to form an activated doped contact region using a laser irradiation process. The laser irradiation process improves the electrical activation of the doped contact region without interfering with the silicide and S/D regions of the logic devices.
    • 使用激光照射激活过程形成用于存储器件的位线接触区域和位线接触插塞的示例性方法。 示例实施例包括:提供具有逻辑区域和SONOS存储器区域的衬底。 在存储区域中形成存储器晶体管,该存储晶体管由存储栅极电介质,存储栅极电极,存储器LDD区域,存储器栅电极的侧壁上的存储器间隔构成。 然后,我们执行“存储单元源线”注入,以在与存储器栅电极相邻的存储器区域中形成存储器源极线。 我们在存储器栅电极和存储器源极线上形成硅化物。 我们在衬底表面上形成一个ILD电介质层。 我们在存储器区域中的存储器漏极上的ILD电介质层中形成接触开口。 我们蚀刻在与存储栅电极相邻的漏极区中的衬底中的开口。 开口第一次暴露存储单元并暴露开口侧壁上的存储器漏极。 我们从开口下方的掺杂接触区域执行位线接触插入注入。 我们激活掺杂接触区域,以使用激光照射工艺形成激活的掺杂接触区域。 激光照射过程改善了掺杂接触区域的电激活,而不会干扰逻辑器件的硅化物和S / D区域。
    • 2. 发明申请
    • Method to fabricate variable work function gates for FUSI devices
    • 为FUSI设备制造可变功能门的方法
    • US20060160290A1
    • 2006-07-20
    • US11039428
    • 2005-01-20
    • Yung ChongDong SohnChew-Hue AngPurakh VermoLiang Hsia
    • Yung ChongDong SohnChew-Hue AngPurakh VermoLiang Hsia
    • H01L21/8238
    • H01L21/823814H01L21/823835H01L21/823842
    • An embodiment of fabrication of a variable work function gates in a FUSI device is described. The embodiment uses a work function doping implant to dope the polysilicon to achieve a desired work function. Selective epitaxy growth (SEG) is used to form silicon over the source/drain regions. The doped poly-Si gate is fully silicided to form fully silicided gates that have a desired work function. We provide a substrate having a NMOS region and a PMOS region. We form a gate dielectric layer and a gate layer over said substrate. We perform a (gate Vt) gate layer implant process to implant impurities such as P+, As+, B+, BF2+, N+, Sb+, In+, C+, Si+, Ge+ or Ar+ into the gate layer gate in the NMOS gate regions and said PMOS gate regions. We form a cap layer over said gate layer. We pattern said cap layer, said gate layer and said gate dielectric layer to form a NMOS gate and a PMOS gate. Spacers are formed and S/D regions are formed. A metal is deposited over said substrate surface. We anneal said metal layer to form fully silicided NMOS gate and fully silicided PMOS gate.
    • 描述了在FUSI设备中制造可变功函数门的实施例。 该实施例使用功函数掺杂注入来掺杂多晶硅以实现所需的功函数。 选择性外延生长(SEG)用于在源极/漏极区域上形成硅。 掺杂的多晶硅栅极被完全硅化以形成具有所需功函数的完全硅化栅极。 我们提供具有NMOS区和PMOS区的衬底。 我们在所述衬底上形成栅极介电层和栅极层。 我们进行(栅极Vt)栅极层注入工艺,将诸如P +,As +,B +,BF 2 +,N +,Sb +,In +,C +,Si +,Ge +或Ar +的杂质注入栅极层 NMOS栅极区域和所述PMOS栅极区域中的栅极。 我们在所述栅极层上形成覆盖层。 我们对所述盖层,所述栅极层和所述栅极电介质层进行图案化以形成NMOS栅极和PMOS栅极。 形成间隔物并形成S / D区域。 在所述衬底表面上沉积金属。 我们退火所述金属层以形成完全硅化的NMOS栅极和完全硅化的PMOS栅极。
    • 3. 发明申请
    • Method of forming a relaxed semiconductor buffer layer on a substrate with a large lattice mismatch
    • 在具有大晶格失配的衬底上形成松散半导体缓冲层的方法
    • US20050164436A1
    • 2005-07-28
    • US10865433
    • 2004-06-10
    • Jin LiuDong SohnLiang Hsia
    • Jin LiuDong SohnLiang Hsia
    • C30B29/52H01L21/20H01L29/10H01L21/338C30B1/00H01L21/36
    • C30B29/52H01L21/02381H01L21/0245H01L21/02463H01L21/02502H01L21/0251H01L21/02532H01L21/02543H01L21/0262H01L29/1054
    • A method of forming a relaxed silicon—germanium layer for use as an underlying layer for a subsequent, overlying tensile strain silicon layer, has been developed. The method features initial growth of a underlying first silicon—germanium layer on a semiconductor substrate, compositionally graded to feature the largest germanium content at the interface of the first silicon—germanium layer and the semiconductor substrate, with the level of germanium decreasing as the growth of the graded first silicon—germanium layer progresses. This growth sequence allows the largest lattice mismatch and greatest level of threading dislocations to be present at the bottom of the graded silicon—germanium layer, with the magnitude of lattice mismatch and threading dislocations decreasing as the growth of the graded silicon—germanium layer progresses. In situ growth of an overlying silicon—germanium layer featuring uniform or non—graded germanium content, results in a relaxed silicon—germanium layer with a minimum of dislocations propagating from the underlying graded silicon—germanium layer. In situ growth of a silicon layer results in a tensile strain, low defect density layer to be used for MOSFET device applications.
    • 已经开发了形成用于随后的上覆拉伸应变硅层的下层的松弛硅锗层的方法。 该方法的特征在于半导体衬底上的底层第一硅 - 锗层的初始生长,其组成分级以在第一硅 - 锗层和半导体衬底的界面处具有最大的锗含量,锗的含量随着生长 的分级第一硅锗层进行。 该生长序列允许最大的晶格失配和最高级别的穿透位错存在于渐变硅 - 锗层的底部,随着梯度硅 - 锗层的生长进行,晶格失配和穿透位错的大小减小。 具有均匀或非分级锗含量的上覆硅锗层的原位生长导致松弛的硅 - 锗层,其中最小的位错从下面的梯度硅 - 锗层传播。 硅层的原位生长导致用于MOSFET器件应用的拉伸应变,低缺陷密度层。
    • 7. 发明申请
    • Method of forming a relaxed semiconductor buffer layer on a substrate with a large lattice mismatch
    • 在具有大晶格失配的衬底上形成松散半导体缓冲层的方法
    • US20050164473A1
    • 2005-07-28
    • US10763305
    • 2004-01-23
    • Jin LiuDong SohnLiang Hsia
    • Jin LiuDong SohnLiang Hsia
    • C30B29/52H01L21/20H01L29/10C30B1/00
    • C30B29/52H01L21/02381H01L21/0245H01L21/02463H01L21/02502H01L21/0251H01L21/02532H01L21/02543H01L21/0262H01L29/1054Y10S438/933
    • A method of forming a relaxed silicon-germanium layer for use as an underlying layer for a subsequent overlying tensile strain silicon layer, has been developed. The method features initial growth of a underlying first silicon-germanium layer on a semiconductor substrate, compositionally graded to feature the largest germanium content at the interface of the first silicon-germanium layer and the semiconductor substrate, with the level of germanium decreasing as the growth of the graded first silicon-germanium layer progresses. This growth sequence allows the largest lattice mismatch and greatest level of threading dislocations to be present at the bottom of the graded silicon-germanium layer, with the magnitude of lattice mismatch and threading dislocations decreasing as the growth of the graded silicon-germanium layer progresses. In situ growth of an overlying silicon-germanium layer featuring uniform or non-graded germanium content, results in a relaxed silicon-germanium layer with a minimum of dislocations propagating from the underlying graded silicon-germanium layer. In situ growth of a silicon layer results in a tensile strain, low defect density layer to be used for MOSFET device applications.
    • 已经开发了形成用于随后的上覆拉伸应变硅层的下层的松弛硅 - 锗层的方法。 该方法的特征在于半导体衬底上的底层第一硅 - 锗层的初始生长,其组成分级以在第一硅 - 锗层和半导体衬底的界面处具有最大的锗含量,锗的含量随着生长 的分级第一硅锗层进行。 该生长序列允许最大的晶格失配和最高级别的穿透位错存在于渐变硅 - 锗层的底部,随着梯度硅 - 锗层的生长进行,晶格失配和穿透位错的大小减小。 具有均匀或非分级锗含量的上覆硅锗层的原位生长导致松弛的硅 - 锗层,其中最小的位错从下面的梯度硅 - 锗层传播。 硅层的原位生长导致用于MOSFET器件应用的拉伸应变,低缺陷密度层。