会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • COMBINED CELL MODULE FOR SOLID OXIDE FUEL CELL
    • 用于固体氧化物燃料电池的组合式电池模块
    • US20110065019A1
    • 2011-03-17
    • US12748114
    • 2010-03-26
    • Shunsuke Taniguchi
    • Shunsuke Taniguchi
    • H01M8/10
    • H01M8/243H01M8/12H01M8/2465H01M2008/1293Y02P70/56
    • A combined cell module for a solid oxide fuel cell includes: a first sub-cell; a second sub-cell; a connector between the first and second sub-cells, each of the first and second sub-cells having a hollow portion extending along its length direction, each of the first and second sub-cells including: a first electrode; a second electrode; an electrolyte layer between the first and second electrodes; and a support member extending along the length direction within the hollow portion, the support members of the first and second sub-cells being physically coupled to each other via the connector, and at least one of the first electrode or the second electrode of the first sub-cell being electrically coupled to at least one of the first electrode or the second electrode of the second sub-cell via the connector.
    • 用于固体氧化物燃料电池的组合电池模块包括:第一子电池; 第二子电池; 所述第一和第二子单元之间的连接器,所述第一和第二子单元中的每一个具有沿其长度方向延伸的中空部分,所述第一和第二子单元中的每一个包括:第一电极; 第二电极; 第一和第二电极之间的电解质层; 以及沿所述长度方向在所述中空部分内延伸的支撑构件,所述第一和第二子单元的支撑构件经由所述连接器彼此物理耦合,并且所述第一和第二子单元的所述第一电极或所述第二电极中的至少一个 子单元经由连接器电耦合到第二子单元的第一电极或第二电极中的至少一个。
    • 5. 发明申请
    • Solid oxide electrolyte material and method of producing solid oxide electrolyte
    • 固体氧化物电解质材料及固体氧化物电解质的制造方法
    • US20050153189A1
    • 2005-07-14
    • US10996069
    • 2004-11-24
    • Takashi OkamotoShunsuke Taniguchi
    • Takashi OkamotoShunsuke Taniguchi
    • H01M8/02H01M8/12
    • H01M8/1246Y02E60/525Y02P70/56
    • A solid oxide electrolyte material comprising an electrolyte material 50 using oxygen ions as carriers as a base material and a lithium-containing compound 60 added to the base material as a sintering additive is sintered at a sintering temperature of 1300° C. or lower to produce a solid oxide electrolyte 100. This solid oxide electrolyte material can reduce the sintering temperature to extend the range of choices of components of a solid oxide fuel cell and suppress reactions between other components to reduce the manufacturing cost. This solid oxide electrolyte material further can produce a solid oxide electrolyte with sufficient denseness and high gas tightness capable of suppressing fuel leak to improve the electromotive force and output.
    • 将以氧离子作为载体的电解质材料50和作为烧结添加剂添加到基材中的含锂化合物60的固体氧化物电解质材料在1300℃以下的烧结温度下进行烧结, 固体氧化物电解质材料。这种固体氧化物电解质材料可以降低烧结温度以扩大固体氧化物燃料电池组分的选择范围,并抑制其它组分之间的反应以降低制造成本。 该固体氧化物电解质材料还可以制造具有足够的致密度和高气密性的固体氧化物电解质,能够抑制燃料泄漏以改善电动势和输出。
    • 6. 发明授权
    • Solid oxide electrolyte material and method of producing solid oxide electrolyte
    • 固体氧化物电解质材料及固体氧化物电解质的制造方法
    • US07402356B2
    • 2008-07-22
    • US10996069
    • 2004-11-24
    • Takashi OkamotoShunsuke Taniguchi
    • Takashi OkamotoShunsuke Taniguchi
    • H01M8/10
    • H01M8/1246Y02E60/525Y02P70/56
    • A solid oxide electrolyte material comprising an electrolyte material 50 using oxygen ions as carriers as a base material and a lithium-containing compound 60 added to the base material as a sintering additive is sintered at a sintering temperature of 1300° C. or lower to produce a solid oxide electrolyte 100. This solid oxide electrolyte material can reduce the sintering temperature to extend the range of choices of components of a solid oxide fuel cell and suppress reactions between other components to reduce the manufacturing cost. This solid oxide electrolyte material further can produce a solid oxide electrolyte with sufficient denseness and high gas tightness capable of suppressing fuel leak to improve the electromotive force and output.
    • 将以氧离子作为载体的电解质材料50和作为烧结添加剂添加到基材中的含锂化合物60的固体氧化物电解质材料在1300℃以下的烧结温度下进行烧结, 固体氧化物电解质100。 该固体氧化物电解质材料可以降低烧结温度以扩大固体氧化物燃料电池组分的选择范围,并抑制其它组分之间的反应以降低制造成本。 该固体氧化物电解质材料还可以制造具有足够的致密度和高气密性的固体氧化物电解质,能够抑制燃料泄漏以改善电动势和输出。
    • 8. 发明申请
    • COMBINED CELL STRUCTURE FOR SOLID OXIDE FUEL CELL
    • 固体氧化物燃料电池组合电池结构
    • US20110059383A1
    • 2011-03-10
    • US12721381
    • 2010-03-10
    • Shunsuke Taniguchi
    • Shunsuke Taniguchi
    • H01M8/24
    • H01M8/243H01M8/1226H01M8/2465
    • A combined cell structure for a solid oxide fuel cell includes a plurality of tube-type or flat-tube-type solid oxide fuel cells combined in series in a longitudinal direction. The combined cell structure includes first and second cells each having a first electrode, a second electrode and an electrolyte layer between the first and second electrodes. The combined cell structure further includes a support member connecting the cells. The support member can include a first sub-support member passing through a hollow portion of the first cell, and a second sub-support member passing through a hollow portion of the second cell. In the combined cell structure, one end of the first sub-support member is fixedly coupled to one end of the second sub-support member. Accordingly, the first and second cells are connected to each other in the direction of reactant flow.
    • 用于固体氧化物燃料电池的组合电池结构包括沿纵向串联组合的多个管型或扁平管型固体氧化物燃料电池。 组合的电池结构包括第一和第二电池,每个电池在第一和第二电极之间具有第一电极,第二电极和电解质层。 组合的单元结构还包括连接单元的支撑构件。 支撑构件可以包括穿过第一单元的中空部分的第一子支撑构件和穿过第二单元的中空部分的第二副支撑构件。 在组合的单元结构中,第一子支撑构件的一端固定地联接到第二子支撑构件的一端。 因此,第一和第二电池在反应物流动的方向上彼此连接。
    • 9. 发明授权
    • Fuel cell
    • 燃料电池
    • US6083638A
    • 2000-07-04
    • US58703
    • 1998-04-10
    • Shunsuke TaniguchiAkira HamadaYasuo MiyakeMinuro Kaneko
    • Shunsuke TaniguchiAkira HamadaYasuo MiyakeMinuro Kaneko
    • H01M4/66H01M8/02H01M8/04H01M8/06H01M8/10H01M8/24H01M2/02H01M2/14H01M4/86H01M4/68
    • H01M8/0247H01M8/023H01M8/0241H01M8/0258H01M8/1004H01M2300/0082H01M8/04119H01M8/04156H01M8/242
    • A current collector includes a thin porous substrate and a hydrophilic material, where the hydrophilic material is provided to holes of the thin porous substrate or surfaces of skeleton elements of the porous substrate so that hydrophilic areas formed by the hydrophilic material successively pass through the thin porous substrate between both surfaces of the thin porous substrate. In the current collector, water is let out through the hydrophilic areas and does not stay on an interface between an electrode and the current collector so that reaction gas is not hampered and is supplied, unlike a conventional current collector. When the current collector is applied to a polymer electrolyte fuel cell, water is supplied with reliability through the hydrophilic areas to a polymer electrolyte membrane so that the polymer electrolyte membrane is effectively humidified. The current collector applied to a cathode achieves a profound effect because reaction product water tends to stay around a cathode of any types of fuel cells. The current collector also includes gas flow paths which are surrounded by particles of a hydrophobic material and pass through the thin porous substrate between both surfaces of the thin porous substrate. As a result, gas permeability of the current collector is maintained with reliability.
    • 集电体包括薄多孔基材和亲水性材料,其中亲水性材料被提供给多孔基材的多孔基材的孔或多孔基材的骨架元件的表面,使得由亲水性材料形成的亲水区域依次通过薄多孔 衬底在薄多孔衬底的两个表面之间。 在集电器中,水通过亲水区域流出,不会停留在电极和集电体之间的界面上,因此与传统的集电器不同,反应气体不受阻碍并被供应。 当将集电体施加到聚合物电解质燃料电池时,通过亲水区域将可靠性的水供给到聚合物电解质膜,使得聚合物电解质膜被有效地加湿。 施加到阴极上的集电器产生深刻的影响,因为反应产物水倾向于停留在任何类型的燃料电池的阴极周围。 集电器还包括由疏水材料的颗粒包围并在薄多孔基材的两个表面之间通过薄多孔基材的气体流动路径。 结果,可靠地保持集电体的气体渗透性。