会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • Method for mining association rules in data
    • 数据挖掘关联规则的方法
    • US06185549B2
    • 2001-02-06
    • US09069135
    • 1998-04-29
    • Rajeev RastogiKyuseok Shim
    • Rajeev RastogiKyuseok Shim
    • G06F1700
    • G06F17/30539G06Q30/0201
    • An electronic data mining process for mining from an electronic data base using an electronic digital computer a listing of commercially useful information of the type known in the art as an association rule containing at least one uninstantiated condition. For example, the commercially useful information may be information useful for sales promotion, such as promotion of telephone usage. The computer retrieves from the database a plurality of stored parameters from which measures of the uninstatiated condition can be determined. The computer uses a dynamic programming algorithm and iterates over intervals or sub-ranges of the parameters to obtain what is called an at least partially optimized association rule, as optimized intervals or sub-ranges of at least some of the retrieved parameters, for example, time intervals of high usage of certain types of telephone connections. These optimized intervals are provided as the listed commercially useful information. The amount of needed iteration is reduced in some cases by using so-called bucketing and divide-and-conquer techniques. Extension of the process for a plurality of uninstantiated conditions is described.
    • 一种用于使用电子数字计算机从电子数据库挖掘的电子数据挖掘过程,本领域已知的类型的商业上有用的信息的列表作为包含至少一个未发生状态的关联规则。 例如,商业上有用的信息可以是有助于促销的信息,例如促进电话使用。 计算机从数据库中检索多个存储的参数,从该信息可以确定不受损状态的测量。 计算机使用动态规划算法,并且遍历参数的间隔或子范围,以获得所谓的至少部分优化的关联规则,作为至少一些检索参数的优化间隔或子范围,例如, 某些类型的电话连接的高使用时间间隔。 这些优化的间隔作为列出的商业有用的信息提供。 在某些情况下,通过使用所谓的抗衡和分治技术来减少需要的迭代量。 描述了用于多个未示例的条件的处理的扩展。
    • 10. 发明授权
    • Method and system for performing spatial similarity joins on
high-dimensional points
    • 用于在高维点上进行空间相似性的方法和系统
    • US5978794A
    • 1999-11-02
    • US629688
    • 1996-04-09
    • Rakesh AgrawalKyuseok ShimRamakrishnan Srikant
    • Rakesh AgrawalKyuseok ShimRamakrishnan Srikant
    • G06F17/30G06F17/00
    • G06F17/30327Y10S707/99933Y10S707/99934Y10S707/99942
    • A method and system are disclosed for performing spatial similarity joins on high-dimensional points that represent data objects of a database. The method comprises the steps of: generating a data structure based on the similarity distance .epsilon. for organizing the high-dimensional points, traversing the data structure to select pairs of leaf nodes from which the high-dimensional points are joined, and joining the points from selected pairs of nodes according to a joining condition based on the similarity distance .epsilon.. An efficient data structure referred to as an .epsilon.-K-D-B tree is disclosed to provide fast access to the high-dimensional points and to minimize system storage requirements. The invention provides algorithms for generating the .epsilon.-K-D-B tree using biased splitting to minimize the number of nodes to be examined during join operations. The traversing step includes joining selected pairs of nodes and also self-joining selected nodes. Alternatively, the data structure is an R+tree generated using biased splitting.
    • 公开了用于在表示数据库的数据对象的高维点执行空间相似性连接的方法和系统。 该方法包括以下步骤:基于用于组织高维点的相似距离ε生成数据结构,遍历数据结构以选择从其连接高维点的叶节点对,以及从 根据基于相似距离ε的连接条件选择的节点对。 公开了称为eps-K-D-B树的有效数据结构,以提供对高维度点的快速访问并且最小化系统存储要求。 本发明提供了使用偏差分割来生成epsilon -K-D-B树的算法,以使在连接操作期间要检查的节点的数量最小化。 遍历步骤包括连接所选择的节点对以及自连接所选择的节点。 或者,数据结构是使用偏置分割生成的R +树。