会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Microwave transforming method and plasma processing
    • 微波转换方法和等离子体处理
    • US5003152A
    • 1991-03-26
    • US273518
    • 1988-10-19
    • Seitaro MatsuoHiroshi NishimuraMikiho Kiuchi
    • Seitaro MatsuoHiroshi NishimuraMikiho Kiuchi
    • H01L21/205C23C16/511H01J27/18H01J37/32H01L21/302H01L21/3065H05H1/46
    • H01J37/32357C23C16/511H01J27/18
    • In a plasma processing apparatus, a gas to be activated into a plasma is introduced into a plasma formation chamber through a gas introducing pipe. Input microwave energy from a microwave source is also supplied to the plasma formation chamber, so that the introduced gas is activated into the plasma by electron cyclotron resonance. The input microwave energy in a TE mode from the microwave source is received by a tapered waveguide in which a dielectric plate is accommodated, so that at least a part of the input microwave energy is transformed into microwave energy in a TM mode or hybrid mode having an electric field component in the direction of the propagation of the input microwave. Microwave energy in both the modes is introduced into the plasma formation chamber through a microwave introducing window. As a result, the microwave energy in the propagation mode having an electric field component or a longitudinal wave component which is parallel to the direction of the microwave propagation is introduced into the plasma formation chamber. The microwave energy is efficiently supplied to the plasma region which satisfies the ECR conditions and then is absorbed by the plasma. Thus the efficiency of the plasma formation is enhanced and accordingly the throughput of the plasma processing is improved.
    • PCT No.PCT / JP88 / 00401 Sec。 371日期:1988年10月19日 102(e)日期1988年10月19日PCT提交1988年4月25日PCT公布。 出版物WO88 / 08659 日期:1988年11月3日。在等离子体处理装置中,通过气体导入管将待激活等离子体的气体引入等离子体形成室。 从微波源输入微波能量也被提供给等离子体形成室,使得引入的气体通过电子回旋共振被激活到等离子体中。 来自微波源的TE模式的输入微波能量由容纳电介质板的锥形波导接收,使得输入的微波能量的至少一部分以TM模式或混合模式转换为微波能量,具有 在输入微波的传播方向上的电场分量。 这两种模式中的微波能量通过微波引入窗口引入等离子体形成室。 结果,将具有与微波传播方向平行的电场分量或纵波分量的传播模式中的微波能量引入等离子体形成室。 微波能量被有效地提供给满足ECR条件的等离子体区域,然后被等离子体吸收。 因此,提高了等离子体形成的效率,因此提高了等离子体处理的生产量。
    • 3. 发明授权
    • ECR plasma source and ECR plasma device
    • ECR等离子体源和ECR等离子体装置
    • US07485204B2
    • 2009-02-03
    • US10510479
    • 2003-04-09
    • Seitaro MatsuoToshiyuki NozakiFumio Tanaka
    • Seitaro MatsuoToshiyuki NozakiFumio Tanaka
    • C23C16/00C23F1/00H01L21/306
    • H01J37/32229H01J37/32192H01J37/32247H01J37/32357H01J37/32678H05H1/18H05H1/46
    • An ECR plasma source of the invention is constructed of: a plasma generating chamber (10) having a generally rectangular section in a plane normal to a plasma flow; magnetic coils (20, 21) wound in generally rectangular shapes in a plane normal to the plasma flow; and a direct introduction type or branching and binding introduction type waveguide (30) or microwave cavity resonator. Microwaves are transmitted into the plasma generating chamber (10) from a plurality of openings (34) which are formed in such side faces in the waveguide (30) or the microwave cavity resonator as correspond to in-phase microwave portions. Moreover, an ECR plasma device comprises the aforementioned ECR plasma source and a sample moving mechanism for moving a large-sized sample.
    • 本发明的ECR等离子体源由等离子体产生室(10)构成,其在垂直于等离子体流的平面中具有大致矩形的截面; 在垂直于等离子体流动的平面内缠绕成大致矩形形状的磁性线圈(20,21); 以及直接引入型或分支引导型波导(30)或微波谐振腔。 微波从多个开口(34)传输到等离子体发生室(10)中,多个开口(34)形成在与同相微波部分对应的波导(30)或微波空腔谐振器的这种侧面中。 此外,ECR等离子体装置包括上述ECR等离子体源和用于移动大尺寸样品的样品移动机构。
    • 5. 发明授权
    • Plasma deposition method and apparatus
    • 等离子体沉积方法和装置
    • US4492620A
    • 1985-01-08
    • US530671
    • 1983-09-09
    • Seitaro MatsuoToshiro Ono
    • Seitaro MatsuoToshiro Ono
    • C23C14/35C23C14/46H01J37/34C23C15/00
    • H01J37/32192C23C14/357C23C14/46H01J37/34
    • A plasma deposition apparatus comprising a plasma formation chamber into which a gas is introduced to produce plasma, a specimen chamber in which a specimen table is disposed for placing thereon a speciment substrate on which a thin film is to be formed, a plasma extraction window interposed between the plasma formation chamber and the specimen chamber, a target which is made of a sputtering material and is interposed between the plasma extraction window and the specimen table, a first means for extracting ions for sputtering the target from a plasma stream extracted from the plasma formation chamber to impinge against the target, and a second means for extracting the plasma stream through the plasma extraction window into the specimen chamber and for transporting the sputtered and ionized atoms to the specimen substrate period on the specimen table. A high quality thin film of various metals and metal compounds can be formed at a low temperature and a thin film is formed, while characteristics or properties of the thin film to be formed is controlled.
    • 一种等离子体沉积装置,包括:等离子体形成室,其中引入气体以产生等离子体;试样室,其中设置有样品台,用于放置其上将要形成薄膜的样品基板;等离子体提取窗口, 在等离子体形成室和样品室之间,由溅射材料制成并介于等离子体提取窗口和样品台之间的靶,用于从等离子体提取的等离子体流中提取用于溅射靶的离子的第一装置 以及第二装置,用于将通过等离子体提取窗口的等离子体流提取到样品室中,并将溅射和离子化的原子输送到样品台上的样品基板周期。 可以在低温下形成各种金属和金属化合物的高质量薄膜,并且形成薄膜,同时控制要形成的薄膜的特性或特性。
    • 6. 发明授权
    • Plasma deposition apparatus
    • 等离子体沉积装置
    • US4401054A
    • 1983-08-30
    • US257616
    • 1981-04-27
    • Seitaro MatsuoHideo YoshiharaShinichi Yamazaki
    • Seitaro MatsuoHideo YoshiharaShinichi Yamazaki
    • C23C16/511H01J37/32H01L21/00C23C13/08
    • H01L21/67069C23C16/511H01J37/32357Y10S505/826
    • A plasma deposition apparatus having a plasma formation chamber and a specimen chamber which are arranged separately. Gaseous material and microwave power are introduced to the plasma formation chamber to generate plasma by a microwave discharge through electron cyclotron resonance. The plasma is extracted to the specimen chamber from the plasma extracting orifice. In the specimen chamber, the plasma is accelerated by the effect of divergent magnetic field to irradiate the surface of the specimen so as to deposit a thin film on the specimen substrate. A high-quality thin film is formed with a high efficiency at a low temperature. Accordingly, a thin film can be deposited on a specimen substrate having a low heat resistivity. The plasma deposition apparatus is useful for manufacturing various kinds of electronic devices.
    • 具有分别配置的等离子体形成室和试样室的等离子体沉积装置。 将气体材料和微波功率引入等离子体形成室,以通过电子回旋共振通过微波放电产生等离子体。 等离子体从等离子体提取孔提取到样品室。 在样品室中,通过发散磁场的作用加速等离子体照射样品的表面,以便在样品基底上沉积薄膜。 在低温下高效率地形成高质量的薄膜。 因此,可以在具有低热阻的试样基板上沉积薄膜。 等离子体沉积设备可用于制造各种电子设备。
    • 8. 发明授权
    • Ion shower apparatus
    • 离子淋浴器
    • US4450031A
    • 1984-05-22
    • US530424
    • 1983-09-08
    • Toshiro OnoSeitaro Matsuo
    • Toshiro OnoSeitaro Matsuo
    • C23C14/46C23C16/513H01J27/14H01J37/08H01J37/32C23F1/02B44C1/22C03C15/00H01L21/306
    • H01J37/32009C23C14/46C23C16/513H01J27/14H01J37/08
    • An ion shower apparatus comprising a plasma formation chamber in which plasma is produced so as to produce ions, a single ion extraction grid disposed in one portion of the plasma formation chamber and for extracting the ions from the plasma formation chamber so as to form an ion beam in the form of shower, a specimen chamber in which the surface of a specimen subjected to etching or deposition or a target subjected to sputtering is irradiated with the ion beam in the form of shower, and a shield grid disposed in the vicinity of the ion extraction grid in the plasma formation chamber and spaced apart from the thickness of the plasma sheath produced over the ion extraction grid, in a manner that the shield grid permits the passage of the plasma therethrough and prevents the electric field produced by the ion extraction grid substantially from extending to the remaining region of the plasma formation chamber. The ion extraction grid is not damaged. An ion beam with a high current is obtained stably.
    • 一种离子淋浴装置,包括:等离子体形成室,其中产生等离子体以产生离子;单个离子提取格栅,设置在等离子体形成室的一部分中,并用于从等离子体形成室中提取离子以形成离子 以淋浴形式的射束,将经受蚀刻或沉积的样品的表面或经溅射的靶的表面以淋浴形式的离子束照射的样品室和设置在该附近的屏蔽栅格 等离子体形成室中的离子提取栅格并且与离子提取栅格上产生的等离子体护套的厚度间隔开,使得屏蔽栅格允许等离子体通过其中并防止由离子提取栅格产生的电场 基本上延伸到等离子体形成室的剩余区域。 离子提取网格没有损坏。 稳定地获得具有高电流的离子束。