会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Platform for learning based recognition research
    • 基于学习的平台识别研究
    • US08266078B2
    • 2012-09-11
    • US12366655
    • 2009-02-06
    • Yu ZouHao WeiGong ChengDongmei ZhangJian Wang
    • Yu ZouHao WeiGong ChengDongmei ZhangJian Wang
    • G06F15/18G06K9/62G06K9/46
    • G06K9/6253G10L15/063
    • A method for researching and developing a recognition model in a computing environment, including gathering one or more data samples from one or more users in the computing environment into a training data set used for creating the recognition model, receiving one or more training parameters defining a feature extraction algorithm configured to analyze one or more features of the training data set, a classifier algorithm configured to associate the features to a template set, a selection of a subset of the training data set, a type of the data samples, or combinations thereof, creating the recognition model based on the training parameters, and evaluating the recognition model.
    • 一种用于在计算环境中研究和开发识别模型的方法,包括将来自所述计算环境中的一个或多个用户的一个或多个数据样本收集到用于创建所述识别模型的训练数据集中,接收定义一个或多个训练参数的训练参数 特征提取算法,其被配置为分析训练数据集的一个或多个特征,分类器算法,被配置为将特征与模板集合相关联,训练数据集的子集的选择,数据样本的类型或其组合 ,基于训练参数创建识别模型,并对识别模型进行评估。
    • 6. 发明申请
    • Data Relationship Visualizer
    • 数据关系可视化器
    • US20080313211A1
    • 2008-12-18
    • US11764354
    • 2007-06-18
    • Yingnong DangXu YangDongmei ZhangMin WangJian Wang
    • Yingnong DangXu YangDongmei ZhangMin WangJian Wang
    • G06F17/00
    • G06F17/30994G06F17/30014
    • Data having express or implied relationships may be displayed by selecting a starting entity in a data structure, building a relationship tree, and building and optimizing a relationship matrix based on the relationship tree. The optimized relationship matrix may be used to layout and render a graphical image that positions various elements with respect to the starting entity based on the relationships. The distance matrix may be optimized by creating a first distance matrix based on the relationship tree, developing a dissimilarity matrix based on expressed or implied relationships, and multiplying the dissimilarity matrix by a weighting factor to determine a distance matrix that may be optimized by multi-dimensional scaling. An optimized weighting factor may be determined and used to select an optimized distance matrix.
    • 可以通过选择数据结构中的起始实体,建立关系树,以及基于关系树建立和优化关系矩阵来显示具有明确或隐含关系的数据。 优化的关系矩阵可以用于基于关系来布局和渲染相对于起始实体定位各种元素的图形图像。 距离矩阵可以通过基于关系树创建第一距离矩阵,基于表示或隐含的关系开发不相似矩阵,以及将不相似矩阵乘以加权因子来确定可以通过多重关系树优化的距离矩阵来优化, 尺寸缩放。 可以确定优化的加权因子并用于选择优化的距离矩阵。
    • 7. 发明授权
    • Data relationship visualizer
    • 数据关系可视化
    • US08060540B2
    • 2011-11-15
    • US11764354
    • 2007-06-18
    • Yingnong DangXu YangDongmei ZhangMin WangJian Wang
    • Yingnong DangXu YangDongmei ZhangMin WangJian Wang
    • G06F17/30
    • G06F17/30994G06F17/30014
    • Data having express or implied relationships may be displayed by selecting a starting entity in a data structure, building a relationship tree, and building and optimizing a relationship matrix based on the relationship tree. The optimized relationship matrix may be used to layout and render a graphical image that positions various elements with respect to the starting entity based on the relationships. The distance matrix may be optimized by creating a first distance matrix based on the relationship tree, developing a dissimilarity matrix based on expressed or implied relationships, and multiplying the dissimilarity matrix by a weighting factor to determine a distance matrix that may be optimized by multi-dimensional scaling. An optimized weighting factor may be determined and used to select an optimized distance matrix.
    • 可以通过选择数据结构中的起始实体,建立关系树,以及基于关系树建立和优化关系矩阵来显示具有明确或隐含关系的数据。 优化的关系矩阵可以用于基于关系来布局和渲染相对于起始实体定位各种元素的图形图像。 距离矩阵可以通过基于关系树创建第一距离矩阵,基于表示或隐含的关系开发不相似矩阵,以及将不相似矩阵乘以加权因子来确定可以通过多重关系树优化的距离矩阵来优化, 尺寸缩放。 可以确定优化的加权因子并用于选择优化的距离矩阵。
    • 10. 发明授权
    • Unified digital ink recognition
    • 统一数字墨水识别
    • US08041120B2
    • 2011-10-18
    • US11821858
    • 2007-06-26
    • Dongmei ZhangXiaohui HouYingjun QiuJian Wang
    • Dongmei ZhangXiaohui HouYingjun QiuJian Wang
    • G06K9/46G06K9/66
    • G06K9/00422
    • Described is a unified digital ink recognizer that recognizes various different types of digital ink data, such as handwritten character data and custom data, e.g., sketched shapes, handwritten gestures, and/or drawn pictures, without further participation by a user such as recognition mode selection or parameter input. For a custom item, the output may be a Unicode value from a private use area of Unicode. Building the unified digital ink recognizer may include defining the data set to be recognized, extracting features of training samples corresponding to the dataset items to build a recognizer model, evaluating the recognizer model using testing data, and modifying the recognizer model using tuning data. The extracted features may be processed into feature data for a multi-dimensional nearest neighbor recognizer approach; the extracted features for the samples of each class is calculated and combined into the feature set for this class in the resulting recognizer model.
    • 描述了一种统一的数字墨水识别器,其识别各种不同类型的数字墨水数据,例如手写字符数据和自定义数据,例如草图形状,手写手势和/或绘制的图像,而不需要诸如识别模式的用户的进一步参与 选择或参数输入。 对于自定义项目,输出可能是Unicode的私有使用区域的Unicode值。 构建统一数字墨水识别器可以包括定义要识别的数据集,提取与数据集项目相对应的训练样本的特征以构建识别器模型,使用测试数据评估识别器模型,以及使用调谐数据修改识别器模型。 提取的特征可以被处理成用于多维最近邻识别器方法的特征数据; 计算每个类的样本的提取特征,并将其组合到生成的识别器模型中的该类的特征集中。