会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • SYSTEM FOR FINDING QUERIES AIMING AT TAIL URLs
    • 在尾部URL中查找查询的系统
    • US20100179929A1
    • 2010-07-15
    • US12351013
    • 2009-01-09
    • Xiaoxin YinVijay Ravindran NairRyan Frederick StewartFang LiuJunhua WangTiffany Kumi DohzenYi-Min Wang
    • Xiaoxin YinVijay Ravindran NairRyan Frederick StewartFang LiuJunhua WangTiffany Kumi DohzenYi-Min Wang
    • G06F15/18G06N5/02
    • G06F17/30864
    • Systems and methodologies for improved query classification and processing are provided herein. As described herein, a query prediction model can be constructed from a set of training data (e.g., diagnostic data obtained from an automatic diagnostic system and/or other suitable data) using a machine learning-based technique. Subsequently upon receiving a query, a set of features corresponding to the query, such as the length and/or frequency of the query, unigram probabilities of respective words and/or groups of words in the query, presence of pre-designated words or phrases in the query, or the like, can be generated. The generated features can then be analyzed in combination with the query prediction model to classify the query by predicting whether the query is aimed at a head Uniform Resource Locator (URL) or a tail URL. Based on this prediction, an appropriate index or combination of indexes can be assigned to answer the query.
    • 本文提供了改进的查询分类和处理的系统和方法。 如本文所述,可以使用基于机器学习的技术从一组训练数据(例如,从自动诊断系统获得的诊断数据和/或其他合适的数据)来构建查询预测模型。 随后在接收到查询后,查询对应的一组特征,诸如查询的长度和/或频率,查询中各个单词和/或单词组的单位概率,预先指定的单词或短语的存在 在查询等中可以生成。 然后可以结合查询预测模型分析生成的特征,以通过预测查询是针对头统一资源定位符(URL)还是尾URL来对查询进行分类。 基于该预测,可以分配适当的索引或索引组合来回答查询。
    • 2. 发明授权
    • System for finding queries aiming at tail URLs
    • 用于查找针对尾部URL的查询的系统
    • US08145622B2
    • 2012-03-27
    • US12351013
    • 2009-01-09
    • Xiaoxin YinVijay Ravindran NairRyan Frederick StewartFang LiuJunhua WangTiffany Kumi DohzenYi-Min Wang
    • Xiaoxin YinVijay Ravindran NairRyan Frederick StewartFang LiuJunhua WangTiffany Kumi DohzenYi-Min Wang
    • G06F7/00
    • G06F17/30864
    • Systems and methodologies for improved query classification and processing are provided herein. As described herein, a query prediction model can be constructed from a set of training data (e.g., diagnostic data obtained from an automatic diagnostic system and/or other suitable data) using a machine learning-based technique. Subsequently upon receiving a query, a set of features corresponding to the query, such as the length and/or frequency of the query, unigram probabilities of respective words and/or groups of words in the query, presence of pre-designated words or phrases in the query, or the like, can be generated. The generated features can then be analyzed in combination with the query prediction model to classify the query by predicting whether the query is aimed at a head Uniform Resource Locator (URL) or a tail URL. Based on this prediction, an appropriate index or combination of indexes can be assigned to answer the query.
    • 本文提供了改进的查询分类和处理的系统和方法。 如本文所述,可以使用基于机器学习的技术从一组训练数据(例如,从自动诊断系统获得的诊断数据和/或其他合适的数据)来构建查询预测模型。 随后在接收到查询后,查询对应的一组特征,诸如查询的长度和/或频率,查询中各个单词和/或单词组的单位概率,预先指定的单词或短语的存在 在查询等中可以生成。 然后可以结合查询预测模型分析生成的特征,以通过预测查询是针对头统一资源定位符(URL)还是尾URL来对查询进行分类。 基于该预测,可以分配适当的索引或索引组合来回答查询。
    • 4. 发明授权
    • Structuring unstructured web data using crowdsourcing
    • 使用众包构建非结构化Web数据
    • US09460419B2
    • 2016-10-04
    • US12971976
    • 2010-12-17
    • Yi-Chin TuAleksey SinyaginXiaoxin YinWenzhao TanLi-wei HeYi-Min WangEmre KicimanChun-Kai Wang
    • Yi-Chin TuAleksey SinyaginXiaoxin YinWenzhao TanLi-wei HeYi-Min WangEmre KicimanChun-Kai Wang
    • G06F17/30G06Q10/10
    • G06Q10/101G06F17/30882
    • A crowdsourcing data structuring system and method for capturing unstructured data from the Web and adding structure by placing the data in a document that is accessible by others in a cloud computing environment. Using crowdsourcing, the unstructured data is annotated, amended, and verified to add structure to the unstructured data. An anchor and update module convert the data to a pointer that links the document to the data at an information source and stores the pointer in the document rather than the data itself. The data displayed in the document is updated whenever the information source is updated. A contribution module allows users to add data to the document, a validation module allows users to determine the validity of the data linked to in the document, and an expert ranking module allows users to rank the expert or contributor of the data in the document.
    • 用于从Web获取非结构化数据并通过将数据放置在可由其他人在云计算环境中访问的文档中来添加结构的众包数据结构化系统和方法。 使用众包,非结构化数据进行注释,修改和验证,以向非结构化数据添加结构。 锚和更新模块将数据转换为将文档链接到信息源上的数据的指针,并将指针存储在文档中而不是数据本身。 每当更新信息源时,文档中显示的数据都会更新。 贡献模块允许用户向文档添加数据,验证模块允许用户确定文档中链接的数据的有效性,专家排名模块允许用户对文档中的数据的专家或贡献者进行排名。
    • 7. 发明授权
    • Search ranger system and double-funnel model for search spam analyses and browser protection
    • 搜索游侠系统和双漏斗模型,用于搜索垃圾邮件分析和浏览器保护
    • US08667117B2
    • 2014-03-04
    • US11756602
    • 2007-05-31
    • Yi-Min WangMing Ma
    • Yi-Min WangMing Ma
    • G06F15/173G06F15/16G06F7/00G06F17/30
    • G06F17/30864
    • An exemplary method for protecting web browsers from spam includes providing a multi-layer model that includes a doorway layer, a redirection domain layer, an aggregator layer, a syndicator layer and an advertiser layer; identifying domains as being associated with at least one of the layers; and, based at least in part on the identifying, taking one or more corrective actions to protect web browsers from search spam. An exemplary method for identifying a bottleneck layer in a multi-layer spam model includes providing a multi-layer spam model, collecting spam advertisements, associating a block of IP addresses with the collected spam advertisements and identifying a bottleneck layer based on the block of IP addresses. Other methods, systems, etc., are also disclosed.
    • 用于保护web浏览器免受垃圾邮件的示例性方法包括提供包括门口层,重定向域层,聚合器层,聚合器层和广告商层的多层模型; 将域标识为与所述层中的至少一个相关联; 并且至少部分地基于识别,采取一个或多个纠正措施来保护网络浏览器免于搜索垃圾邮件。 用于识别多层垃圾邮件模型中的瓶颈层的示例性方法包括提供多层垃圾邮件模型,收集垃圾邮件广告,将IP地址块与收集的垃圾广告相关联,以及基于IP块识别瓶颈层 地址 还公开了其它方法,系统等。
    • 10. 发明申请
    • CLICK CHAIN MODEL
    • 点击链模型
    • US20100138410A1
    • 2010-06-03
    • US12327783
    • 2008-12-03
    • Chao LiuFan GuoYi-Min Wang
    • Chao LiuFan GuoYi-Min Wang
    • G06F17/30
    • G06F17/30864
    • Techniques are described for generating a statistical model from observed click chains. The model can be used to compute a probability that a document is relevant to a given search query. With the model, a probability of a user examining a given document in a given search result conditionally depends on: a probability that a preceding document in the given search result is examined by a user viewing the given search result; a probability that the preceding document is clicked on by a user viewing the given search result, which conditionally depends directly on the probability that the preceding document is examined and on a probability of relevance of the preceding document.
    • 描述了从观察到的点击链中生成统计模型的技术。 该模型可用于计算文档与给定搜索查询相关的概率。 使用该模型,用户在给定搜索结果中检查给定文档的概率有条件地取决于:给定搜索结果中的前一个文档被查看给定搜索结果的用户检查的概率; 观看给定搜索结果的用户点击前一文档的概率,其有条件地直接取决于前一文档被检查的概率和前一文档的相关概率。