会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Semiconductor wafer temperature measurement system and method
    • 半导体晶圆温度测量系统及方法
    • US5102231A
    • 1992-04-07
    • US647085
    • 1991-01-29
    • Lee M. LoewensteinJohn D. LawrenceWayne G. FisherCecil J. Davis
    • Lee M. LoewensteinJohn D. LawrenceWayne G. FisherCecil J. Davis
    • G01K5/52
    • G01K5/52
    • A system for measuring the temperature of a semiconductor wafer 12 comprises a light source 14, a photodetector 20 which is operable to determine light intensity, and a mirror 18 in a predetermined fixed position from a beam splitter 16. The components are positioned such that light from the light source 14 impinges the beam splitter 16 and subsequently reflects off the mirror 18 and the wafer 12 and is received by the photodetector 20. Changes in the temperature of the wafer 12 are calculated based upon changes in the intensity of the received light which depends upon the expansion/contraction of the wafer. The absolute temperature may be calculated based on a known reference temperature and the changes in wafer 12 temperature. A second system and method for measuring the temperature of a semiconductor wafer which includes the use of a plurality of mirrors and two beam splitters is also disclosed.
    • 用于测量半导体晶片12的温度的系统包括光源14,可操作以确定光强度的光电检测器20和来自分束器16的预定固定位置的反射镜18.部件被定位成使得光 从光源14入射分束器16,随后从反射镜18和晶片12反射并被光电检测器20接收。晶片12的温度变化基于接收光强度的变化来计算, 取决于晶片的膨胀/收缩。 可以基于已知的参考温度和晶片12温度的变化来计算绝对温度。 还公开了一种用于测量包括使用多个反射镜和两个分束器的半导体晶片的温度的第二系统和方法。
    • 5. 发明授权
    • Processing apparatus and method
    • 处理装置和方法
    • US4830700A
    • 1989-05-16
    • US188177
    • 1988-04-27
    • Cecil J. DavisRobert T. MatthewsWayne G. Fisher
    • Cecil J. DavisRobert T. MatthewsWayne G. Fisher
    • H01L21/00
    • H01L21/67115
    • A radiant heating processing apparatus and method for a rapid thermal processing system, wherein only the base of the reflector module is directly water cooled. The sides of the reflector module are not directly water cooled; instead, the module is made to be a slip fit into a chamber which does have water cooled walls. Thus, in applications where it is desired to be able to fit a rapid thermal processing radiant heating source through a restricted clearance, especially in application where it is desired to be able to insert the module through a vacuum flange, the necessary clearance is reduced by the width which would otherwise be required for water cooling of the sidewalls.
    • 一种用于快速热处理系统的辐射加热处理装置和方法,其中只有反射器模块的基底直接水冷。 反射器模块的两侧不直接水冷; 相反,该模块被制成一个滑动配合到具有水冷壁的室中。 因此,在希望能够通过限制的间隙适应快速热处理辐射热源的应用中,特别是在希望能够通过真空法兰插入模块的应用中,必要的间隙通过 否则将需要用于侧壁的水冷却的宽度。
    • 6. 发明授权
    • Method and apparatus for easing surface particle removal by size increase
    • 通过尺寸增加来缓解表面颗粒去除的方法和装置
    • US4777804A
    • 1988-10-18
    • US89696
    • 1987-08-26
    • Robert A. BowlingWayne G. FisherEdwin G. Millis
    • Robert A. BowlingWayne G. FisherEdwin G. Millis
    • B08B7/00H01L21/00H01L21/306F25B47/00
    • H01L21/02043B08B7/0064H01L21/02052H01L21/67028
    • A method and apparatus is provided for removing submicron sized particles from the surface of a silicon semiconductor wafer (38). Conventional cleaning methods are capable of only removing particles that are about 1 micron or larger in size. The present invention provides a way to increase the submicron particles in size so that they are removable by the known methods. The silicon semiconductor wafer (38) is cooled by a refrigeration unit (36) or by exposure to liquid nitrogen (74). The cooled wafer (38) is then exposed to a condensable material (42) which is allowed to condense on the surface of the wafer (38). The condensable material will surround any particles that are on the surface and cause them to grow in size due to the formation of frozen crystals. Without allowing the crystals to melt, the enlarged particles then are removed by any of the known methods.
    • 提供了一种从硅半导体晶片(38)的表面去除亚微米尺寸的颗粒的方法和装置。 传统的清洁方法只能去除大小约1微米或更大的颗粒。 本发明提供了一种增加亚微米颗粒尺寸的方法,使得它们可通过已知方法除去。 硅半导体晶片(38)由制冷单元(36)或通过暴露于液氮(74)来冷却。 然后将冷却的晶片(38)暴露于冷凝材料(42),该冷凝材料允许在晶片(38)的表面上冷凝。 可冷凝材料将包围表面上的任何颗粒,并由于形成冷冻晶体而导致其尺寸增长。 不允许晶体熔化,然后通过任何已知的方法去除扩大的颗粒。